Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment

颈内动脉 人工智能 分割 深度学习 接收机工作特性 颈总动脉 超声波 分离(统计) 冲程(发动机) 计算机科学 模式识别(心理学) 医学 颈动脉 放射科 机器学习 内科学 机械工程 工程类
作者
Pankaj K. Jain,Neeraj Sharma,Mannudeep K. Kalra,Amer M. Johri,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 106017-106017 被引量:37
标识
DOI:10.1016/j.compbiomed.2022.106017
摘要

Stroke risk assessment using deep learning (DL) requires automated, accurate, and real-time risk assessment while ensuring compact model size. Previous DL paradigms suffered from challenges like memory size, low speed, and complex in nature lacking multi-ethnic, and multi-institution databases. This research segments and measures the area of the plaque far wall of the common carotid (CCA) and internal carotid arteries (ICA) in B-mode ultrasound using four types of solo, namely, UNet, UNet+, UNet++, and UNet+++, and three types of hybrids, namely, Inception-UNet, Fractal-UNet, and Squeeze-UNet, architectures. These seven models are benchmarked against autoencoder-based solution. Three kinds of databases, namely, CCA, ICA, and combined CCA + ICA were implemented using K5 cross-validation protocol. This was validated using unseen Hong Kong data. The CCA database consisted of 379 Japanese images from low-to medium-risk, while the ICA database consisted of 970 Japanese images taken from 97 medium-to high-risk patients. Using the coefficient of correlation (CC) metric between automated measured area and manually delineated area, seven deep learning solo and hybrid models for CCA yielded 0.96, 0.96, 0.98, 0.95, 0.96, and 0.96 respectively, whereas ICA yielded 0.99, 0.99, 0.98, 0.99, 0.98, 0.98, and 0.98 respectively. Area under the receiver operating characteristics curve values for CCA images was 0.97, 0.969, 0.974, 0.969, 0.962, 0.969, and 0.960 respectively, whereas for ICA images were 0.99, 0.989, 0.988, 0.989, 0.986, 0.989, and 0.988, respectively (p < 0.001). The percentage improvement in offline memory size, training time and training parameters for Squeeze-UNet compared to UNet++ were 569%, 122.46%, and 569%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高傲小子完成签到,获得积分20
1秒前
吴wu完成签到 ,获得积分10
3秒前
guo完成签到,获得积分10
3秒前
3秒前
5秒前
gfz关注了科研通微信公众号
6秒前
科研通AI5应助qq大魔王采纳,获得10
6秒前
yulia完成签到 ,获得积分10
6秒前
oneonlycrown完成签到,获得积分10
7秒前
Helen应助郭嘉仪采纳,获得10
7秒前
李健应助琳琳采纳,获得10
7秒前
英勇的梨愁完成签到 ,获得积分10
7秒前
小七发布了新的文献求助10
8秒前
Criminology34应助顾顾顾昊然采纳,获得10
9秒前
慕青应助侯硕采纳,获得10
10秒前
俊逸小刺猬完成签到,获得积分10
12秒前
ddup发布了新的文献求助10
12秒前
12秒前
饱满以松完成签到 ,获得积分10
12秒前
小蘑菇应助Master_Ye采纳,获得10
12秒前
萧寒完成签到,获得积分10
12秒前
13秒前
humorlife完成签到,获得积分10
13秒前
老武发布了新的文献求助20
15秒前
贺姚发布了新的文献求助30
15秒前
15秒前
15秒前
15秒前
Bellis完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
行走在科研的小路上完成签到,获得积分10
16秒前
17秒前
18秒前
惠民发布了新的文献求助10
18秒前
涵忆发布了新的文献求助10
18秒前
18秒前
19秒前
卞卞完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Bacillus subtilis and Other Gram‐Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4853094
求助须知:如何正确求助?哪些是违规求助? 4150984
关于积分的说明 12860023
捐赠科研通 3899535
什么是DOI,文献DOI怎么找? 2142982
邀请新用户注册赠送积分活动 1162762
关于科研通互助平台的介绍 1063143