Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment

颈内动脉 人工智能 分割 深度学习 接收机工作特性 颈总动脉 超声波 分离(统计) 冲程(发动机) 计算机科学 模式识别(心理学) 医学 颈动脉 放射科 机器学习 内科学 工程类 机械工程
作者
Pankaj K. Jain,Neeraj Sharma,Mannudeep K. Kalra,Amer M. Johri,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 106017-106017 被引量:23
标识
DOI:10.1016/j.compbiomed.2022.106017
摘要

Stroke risk assessment using deep learning (DL) requires automated, accurate, and real-time risk assessment while ensuring compact model size. Previous DL paradigms suffered from challenges like memory size, low speed, and complex in nature lacking multi-ethnic, and multi-institution databases. This research segments and measures the area of the plaque far wall of the common carotid (CCA) and internal carotid arteries (ICA) in B-mode ultrasound using four types of solo, namely, UNet, UNet+, UNet++, and UNet+++, and three types of hybrids, namely, Inception-UNet, Fractal-UNet, and Squeeze-UNet, architectures. These seven models are benchmarked against autoencoder-based solution. Three kinds of databases, namely, CCA, ICA, and combined CCA + ICA were implemented using K5 cross-validation protocol. This was validated using unseen Hong Kong data. The CCA database consisted of 379 Japanese images from low-to medium-risk, while the ICA database consisted of 970 Japanese images taken from 97 medium-to high-risk patients. Using the coefficient of correlation (CC) metric between automated measured area and manually delineated area, seven deep learning solo and hybrid models for CCA yielded 0.96, 0.96, 0.98, 0.95, 0.96, and 0.96 respectively, whereas ICA yielded 0.99, 0.99, 0.98, 0.99, 0.98, 0.98, and 0.98 respectively. Area under the receiver operating characteristics curve values for CCA images was 0.97, 0.969, 0.974, 0.969, 0.962, 0.969, and 0.960 respectively, whereas for ICA images were 0.99, 0.989, 0.988, 0.989, 0.986, 0.989, and 0.988, respectively (p < 0.001). The percentage improvement in offline memory size, training time and training parameters for Squeeze-UNet compared to UNet++ were 569%, 122.46%, and 569%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YCW发布了新的文献求助10
刚刚
刚刚
背后惜文发布了新的文献求助20
1秒前
adobe发布了新的文献求助10
2秒前
serendipity完成签到 ,获得积分10
2秒前
3秒前
慕青应助小富采纳,获得10
3秒前
优雅小虾米完成签到,获得积分10
4秒前
科研通AI5应助顾志成采纳,获得10
4秒前
4秒前
豆沙包小团子完成签到 ,获得积分10
5秒前
snow完成签到,获得积分10
5秒前
5秒前
完美世界应助alin采纳,获得10
6秒前
完美世界应助YCW采纳,获得10
7秒前
酷波er应助Alane采纳,获得10
7秒前
Moira完成签到,获得积分10
7秒前
向阳而生发布了新的文献求助20
7秒前
科研通AI5应助zhanyuji采纳,获得10
7秒前
科研通AI5应助东东采纳,获得10
8秒前
8秒前
8秒前
侠医2012完成签到,获得积分0
9秒前
9秒前
小巧的傲松完成签到,获得积分10
9秒前
彩色的怀柔完成签到,获得积分10
10秒前
穆奕完成签到 ,获得积分10
10秒前
11秒前
jt发布了新的文献求助10
11秒前
adobe完成签到,获得积分10
12秒前
yq完成签到,获得积分10
12秒前
12秒前
13秒前
orixero应助一只西瓜茶采纳,获得10
13秒前
Skuld应助文静灵阳采纳,获得10
13秒前
Unicorn完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
博修发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397