Far wall plaque segmentation and area measurement in common and internal carotid artery ultrasound using U-series architectures: An unseen Artificial Intelligence paradigm for stroke risk assessment

颈内动脉 人工智能 分割 深度学习 接收机工作特性 颈总动脉 超声波 分离(统计) 冲程(发动机) 计算机科学 模式识别(心理学) 医学 颈动脉 放射科 机器学习 内科学 工程类 机械工程
作者
Pankaj K. Jain,Neeraj Sharma,Mannudeep K. Kalra,Amer M. Johri,Luca Saba,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 106017-106017 被引量:39
标识
DOI:10.1016/j.compbiomed.2022.106017
摘要

Stroke risk assessment using deep learning (DL) requires automated, accurate, and real-time risk assessment while ensuring compact model size. Previous DL paradigms suffered from challenges like memory size, low speed, and complex in nature lacking multi-ethnic, and multi-institution databases. This research segments and measures the area of the plaque far wall of the common carotid (CCA) and internal carotid arteries (ICA) in B-mode ultrasound using four types of solo, namely, UNet, UNet+, UNet++, and UNet+++, and three types of hybrids, namely, Inception-UNet, Fractal-UNet, and Squeeze-UNet, architectures. These seven models are benchmarked against autoencoder-based solution. Three kinds of databases, namely, CCA, ICA, and combined CCA + ICA were implemented using K5 cross-validation protocol. This was validated using unseen Hong Kong data. The CCA database consisted of 379 Japanese images from low-to medium-risk, while the ICA database consisted of 970 Japanese images taken from 97 medium-to high-risk patients. Using the coefficient of correlation (CC) metric between automated measured area and manually delineated area, seven deep learning solo and hybrid models for CCA yielded 0.96, 0.96, 0.98, 0.95, 0.96, and 0.96 respectively, whereas ICA yielded 0.99, 0.99, 0.98, 0.99, 0.98, 0.98, and 0.98 respectively. Area under the receiver operating characteristics curve values for CCA images was 0.97, 0.969, 0.974, 0.969, 0.962, 0.969, and 0.960 respectively, whereas for ICA images were 0.99, 0.989, 0.988, 0.989, 0.986, 0.989, and 0.988, respectively (p < 0.001). The percentage improvement in offline memory size, training time and training parameters for Squeeze-UNet compared to UNet++ were 569%, 122.46%, and 569%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Hsu完成签到,获得积分20
3秒前
aaaaf发布了新的文献求助10
3秒前
3秒前
3秒前
薇薇一笑完成签到,获得积分10
4秒前
phoenix001发布了新的文献求助10
4秒前
lili发布了新的文献求助10
5秒前
MZ发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
小谭完成签到 ,获得积分10
9秒前
Rui发布了新的文献求助10
9秒前
FashionBoy应助熊熊冲冲冲采纳,获得10
10秒前
Summer发布了新的文献求助30
10秒前
今后应助LeaF采纳,获得10
11秒前
11秒前
万能图书馆应助LeaF采纳,获得10
11秒前
科研通AI2S应助LeaF采纳,获得10
11秒前
11秒前
11秒前
11秒前
飘逸秋荷发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
李爱国应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
Akim应助王兴采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得30
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
西西完成签到 ,获得积分10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730704
求助须知:如何正确求助?哪些是违规求助? 5324871
关于积分的说明 15319570
捐赠科研通 4877061
什么是DOI,文献DOI怎么找? 2619989
邀请新用户注册赠送积分活动 1569293
关于科研通互助平台的介绍 1525835