Observational Learning in Networks of Competition: How structures of attention among rivals can bring interpretive advantage

竞争对手分析 竞赛(生物学) 机会主义 共谋 结束语(心理学) 产业组织 业务 营销 经济 微观经济学 市场经济 生态学 生物
作者
Matteo Prato,David Stark
出处
期刊:Organization Studies [SAGE]
卷期号:44 (2): 253-276 被引量:14
标识
DOI:10.1177/01708406221118672
摘要

Much of social network analysis has focused on learning in communication networks among collaborators in which actors can make direct inquiries to seek clarification about alters’ behavior or views. But such inquiries are typically not possible among rivals. Learning among rivals occurs primarily in observational networks in which actors must make inferences of the logics guiding their competitors’ behavior in markets. What promotes interpretive advantage in these networks of observation? We combine multimarket competition theory and structural hole theory to highlight the benefits of multiple exposure to disconnected competitors. In network-analytic terms we suggest that competitors’ interpretive advantage lies in non-redundant dyadic closure, especially when dealing with uncertain market niches. Dyadic closure, measuring ego’s exposure to her direct competitors in multiple markets, increases the ability to interpret competitors’ observed behavior. Redundancy, measuring the extent to which ego’s competitors are exposed to each other, reduces the diversity of views to which ego is exposed and hence the capacity to cope with uncertainty. We test our hypothesis by analyzing the network of competition created by securities analysts and the stocks they cover. We find that estimates issued by an analyst with multiple exposures to disconnected competitors are more accurate when confronted by more challenging, high risk, high reward, volatile stocks. Shifting the focus from direct social ties to the cognitive ties that link actors based on the objects, problems, or issues to which they pay attention, we develop a new approach to network analysis. Observation networks, we argue, operate neither as pipes nor as prisms but can be better conceived as scopes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bkagyin应助nieyaochi采纳,获得10
1秒前
1秒前
还没睡醒发布了新的文献求助10
1秒前
1秒前
Ly发布了新的文献求助10
2秒前
duang完成签到,获得积分10
4秒前
GuMingyang发布了新的文献求助10
5秒前
Zach发布了新的文献求助10
5秒前
6秒前
感动寒珊发布了新的文献求助30
8秒前
9秒前
10秒前
希望天下0贩的0应助念念采纳,获得10
10秒前
动听涔雨完成签到,获得积分10
10秒前
1121发布了新的文献求助10
11秒前
WH完成签到,获得积分20
12秒前
12秒前
勤奋的螺蛳粉完成签到,获得积分10
13秒前
13秒前
wang完成签到,获得积分10
14秒前
田柾国完成签到,获得积分10
14秒前
16秒前
17秒前
17秒前
情怀应助asdf采纳,获得10
17秒前
17秒前
共享精神应助Jasmine采纳,获得10
18秒前
zhang-leo发布了新的文献求助10
18秒前
hahha完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
隐形曼青应助活力的元风采纳,获得10
19秒前
冉启琳完成签到,获得积分20
19秒前
19秒前
科研通AI6应助WuYiHHH采纳,获得10
19秒前
自信以冬完成签到,获得积分10
20秒前
20秒前
桐桐应助encounter采纳,获得10
21秒前
饱满的夜安完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480303
求助须知:如何正确求助?哪些是违规求助? 4581518
关于积分的说明 14380905
捐赠科研通 4510074
什么是DOI,文献DOI怎么找? 2471649
邀请新用户注册赠送积分活动 1458040
关于科研通互助平台的介绍 1431812