A Novel Cross-Attention Fusion-Based Joint Training Framework for Robust Underwater Acoustic Signal Recognition

计算机科学 稳健性(进化) 降噪 人工智能 预处理器 模式识别(心理学) 噪声测量 水下 语音识别 噪音(视频) 信号处理 雷达 电信 生物化学 化学 海洋学 图像(数学) 基因 地质学
作者
Aolong Zhou,Xiaoyong Li,Wen Zhang,Dawei Li,Kefeng Deng,Kaijun Ren,Junqiang Song
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:2
标识
DOI:10.1109/tgrs.2023.3333971
摘要

Underwater acoustic signal recognition systems face challenges in achieving high accuracy when processing complex data with low signal-to-noise ratio (SNR) in underwater environments, leading to limited noise robustness. Conventional approaches typically employ pre-trained denoising models for preprocessing noisy signals. However, due to disparate optimization goals between denoising and recognition models, denoising methods might introduce signal distortion, hampering effective enhancement of system accuracy. To address this issue, this paper proposes a novel joint training framework with cross-attention fusion for robust underwater acoustic signal recognition (UASR), called CAF-JT. CAF-JT consists of a denoising module, a recognition module, and the CAF module. It addresses the mismatch problem arising from different optimization directions by jointly training the denoising frontend and the recognition backend. Additionally, inspired by the multi-condition training (MCT) method, the CAF module is designed to fuse characteristics from both denoised and noisy audio, thus incorporating noise information. This fusion mechanism enables the model to better adapt to the characteristics of the noisy environment and enhance its noise robustness. Furthermore, to improve the performance of UASR, TF-Transformer blocks are incorporated into both the denoising module and the recognition module to capture the spatio-temporal distribution of spectral features. The proposed approach is evaluated on two open-source underwater acoustic signal datasets, namely ShipsEar and DeepShip. Extensive experimental demonstrate the superiority of CAF-JT over conventional joint training approaches, showcasing its improved noise robustness. Particularly in low SNR conditions, CAF-JT achieves the best average recognition rates of 94.84% and 93.61% on the two datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻孤风完成签到,获得积分10
刚刚
骄傲yy发布了新的文献求助30
1秒前
1秒前
屋子发布了新的文献求助10
2秒前
灵巧的羽毛完成签到,获得积分10
2秒前
JamesPei应助辛德瑞拉继母采纳,获得10
2秒前
乐观的访风完成签到,获得积分10
4秒前
盒子应助crazy采纳,获得10
5秒前
6秒前
7秒前
kash想毕业发布了新的文献求助10
7秒前
123完成签到,获得积分10
7秒前
8秒前
9秒前
热心的流沙完成签到,获得积分10
9秒前
9秒前
小可爱完成签到,获得积分10
10秒前
12345完成签到,获得积分10
12秒前
Dashihhhh发布了新的文献求助10
12秒前
程雯慧发布了新的文献求助10
13秒前
吃紫薯的鱼完成签到,获得积分10
13秒前
柏儿发布了新的文献求助20
13秒前
小透明发布了新的文献求助50
14秒前
owldan完成签到,获得积分10
14秒前
学习使我快乐1917完成签到,获得积分10
14秒前
Zymiao完成签到,获得积分10
14秒前
16秒前
16秒前
12345发布了新的文献求助10
16秒前
liang完成签到 ,获得积分10
16秒前
17秒前
20秒前
婷婷婷不停完成签到 ,获得积分10
20秒前
20秒前
Zephyr完成签到,获得积分10
20秒前
JamesPei应助红叶采纳,获得10
20秒前
西多士颗粒完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789298
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269281
捐赠科研通 3050758
什么是DOI,文献DOI怎么找? 1674155
邀请新用户注册赠送积分活动 802507
科研通“疑难数据库(出版商)”最低求助积分说明 760693