A Novel Cross-Attention Fusion-Based Joint Training Framework for Robust Underwater Acoustic Signal Recognition

计算机科学 稳健性(进化) 降噪 人工智能 预处理器 模式识别(心理学) 噪声测量 水下 语音识别 噪音(视频) 信号处理 雷达 电信 生物化学 化学 海洋学 图像(数学) 基因 地质学
作者
Aolong Zhou,Xiaoyong Li,Wen Zhang,Dawei Li,Kefeng Deng,Kaijun Ren,Junqiang Song
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:12
标识
DOI:10.1109/tgrs.2023.3333971
摘要

Underwater acoustic signal recognition systems face challenges in achieving high accuracy when processing complex data with low signal-to-noise ratio (SNR) in underwater environments, leading to limited noise robustness. Conventional approaches typically employ pre-trained denoising models for preprocessing noisy signals. However, due to disparate optimization goals between denoising and recognition models, denoising methods might introduce signal distortion, hampering effective enhancement of system accuracy. To address this issue, this paper proposes a novel joint training framework with cross-attention fusion for robust underwater acoustic signal recognition (UASR), called CAF-JT. CAF-JT consists of a denoising module, a recognition module, and the CAF module. It addresses the mismatch problem arising from different optimization directions by jointly training the denoising frontend and the recognition backend. Additionally, inspired by the multi-condition training (MCT) method, the CAF module is designed to fuse characteristics from both denoised and noisy audio, thus incorporating noise information. This fusion mechanism enables the model to better adapt to the characteristics of the noisy environment and enhance its noise robustness. Furthermore, to improve the performance of UASR, TF-Transformer blocks are incorporated into both the denoising module and the recognition module to capture the spatio-temporal distribution of spectral features. The proposed approach is evaluated on two open-source underwater acoustic signal datasets, namely ShipsEar and DeepShip. Extensive experimental demonstrate the superiority of CAF-JT over conventional joint training approaches, showcasing its improved noise robustness. Particularly in low SNR conditions, CAF-JT achieves the best average recognition rates of 94.84% and 93.61% on the two datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzx完成签到,获得积分10
1秒前
爆米花应助杏林靴子采纳,获得10
3秒前
会幸福的发布了新的文献求助10
3秒前
jjk发布了新的文献求助10
4秒前
小马甲应助sakura采纳,获得10
4秒前
绿绿关注了科研通微信公众号
4秒前
ZX完成签到 ,获得积分10
5秒前
6秒前
睡个大觉完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
清脆大米发布了新的文献求助10
8秒前
李爱国应助jinjun采纳,获得10
9秒前
芜湖发布了新的文献求助10
10秒前
Jasper应助魔幻的迎松采纳,获得10
10秒前
14秒前
研友_VZG7GZ应助思维隋采纳,获得10
15秒前
15秒前
传奇3应助着急的滑板采纳,获得10
16秒前
17秒前
海胆菌完成签到,获得积分10
18秒前
于木完成签到 ,获得积分10
19秒前
20秒前
20秒前
科研q完成签到 ,获得积分10
20秒前
hnxxangel发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
嘉悦发布了新的文献求助10
22秒前
23秒前
23秒前
星辰大海应助hnxxangel采纳,获得10
25秒前
Lifel发布了新的文献求助10
25秒前
LZJ发布了新的文献求助10
26秒前
JJ发布了新的文献求助10
28秒前
思维隋发布了新的文献求助10
28秒前
科研通AI6应助爱吃香菜采纳,获得10
32秒前
32秒前
32秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454502
求助须知:如何正确求助?哪些是违规求助? 4561872
关于积分的说明 14283729
捐赠科研通 4485731
什么是DOI,文献DOI怎么找? 2456949
邀请新用户注册赠送积分活动 1447620
关于科研通互助平台的介绍 1422846