An effective PoseC3D model for typical action recognition of dairy cows based on skeleton features

人工智能 稳健性(进化) 计算机科学 卷积神经网络 模式识别(心理学) 计算机视觉 特征提取 生物化学 基因 化学
作者
Zhixin Hua,Zheng Wang,Xingshi Xu,Xiangfeng Kong,Huaibo Song
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108152-108152 被引量:18
标识
DOI:10.1016/j.compag.2023.108152
摘要

The precise recognition of dairy cows' motion behaviors is crucial for the intelligent assessment of their health status. Previous researchers have utilized many methods to detect cow’s motion behaviors, but the accuracy and robustness of these methods remains to be improved. Skeleton-based action recognition methods have reported high accuracy and robustness, but these methods have rarely been applied to the detection of cow’s motion behavior. This research adopted a behavior recognition method based on skeleton features of dairy cows. First, the YOLOX was modified to YOLOX-Pose for end-to-end skeleton extraction. According to the extracted information, the PoseC3D based on 3D Convolutional Neural Network (CNN) was used to predict motion behaviors. In the process of model training, PoseC3D utilized a dataset consisting of 400 videos encompassing actions of lying, standing, walking, and lameness, while YOLOX-Pose was trained using a dataset comprising 1800 images. The results showed that, for skeleton extraction, YOLOX-Pose achieved an AP of 96.3% and detection speed of 33.1fps. For the recognition of the four actions using PoseC3D, the Top-1 accuracy was 92.6%. The results showed that the YOLOX-Pose was a lightweight and high-quality pose estimator, and PoseC3D, with extracted 2D skeleton information, could outperform Graph Convolutional Network (GCN) in action detection. The combination of the YOLOX-Pose and PoseC3D could be used to detect the four typical motion behaviors effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王同学发布了新的文献求助10
刚刚
刘可乐完成签到,获得积分10
1秒前
1秒前
zhang-leo发布了新的文献求助10
1秒前
深情安青应助dadabad采纳,获得10
2秒前
mz发布了新的文献求助10
2秒前
lll完成签到 ,获得积分10
2秒前
2秒前
可爱的函函应助michael采纳,获得10
2秒前
2秒前
Akim应助长情海雪采纳,获得10
2秒前
ding应助劣根采纳,获得10
3秒前
阿景发布了新的文献求助10
3秒前
3秒前
房天川发布了新的文献求助30
3秒前
Eugene完成签到,获得积分10
3秒前
充电宝应助尹姝采纳,获得10
3秒前
4秒前
4秒前
5秒前
哈利波特大完成签到,获得积分10
5秒前
周曦完成签到,获得积分10
6秒前
zhaoyuyuan发布了新的文献求助10
6秒前
6秒前
XA发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
XJP完成签到,获得积分10
8秒前
刻苦沛芹发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
无情的聋五完成签到 ,获得积分10
9秒前
9秒前
hzx发布了新的文献求助10
9秒前
完美世界应助Planck采纳,获得10
9秒前
Hello应助戎荣采纳,获得10
10秒前
哎哎发布了新的文献求助10
10秒前
10秒前
华仔应助糊涂的绿茶采纳,获得10
10秒前
KK完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210