A Method for Spatiotemporally Merging Multi-Source Precipitation Based on Deep Learning

降水 环境科学 均方误差 相关系数 定量降水预报 地形 计算机科学 雨量计 合并(版本控制) 水循环 定量降水量估算 地表径流 气象学 统计 数学 机器学习 生态学 物理 情报检索 生物
作者
Wei Fang,Hui Qin,Guanjun Liu,Xin Yang,Zhanxing Xu,Benjun Jia,Qianyi Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (17): 4160-4160 被引量:5
标识
DOI:10.3390/rs15174160
摘要

Reliable precipitation data are essential for studying water cycle patterns and climate change. However, there are always temporal or spatial errors in precipitation data from various sources. Most precipitation fusion methods are influenced by high-dimensional input features and do not make good use of the spatial correlation between precipitation and environmental variables. Thus, this study proposed a novel multi-source precipitation spatiotemporal fusion method for improving the spatiotemporal accuracy of precipitation. Specifically, the attention mechanism was used to first select critical input information to dimensionalize the inputs, and the Convolutional long-short-term memory network (ConvLSTM) was used to merge precipitation products and environmental variables spatiotemporally. The Yalong River in the southeastern part of the Tibetan Plateau was used as the case study area. The results show that: (1) Compared with the original precipitation products (IMERG, ERA5 and CHIRPS), the proposed method has optimal accuracy and good robustness, and its correlation coefficient (CC) reaches 0.853, its root mean square coefficient (RMSE) decreases to 3.53 mm/d and its mean absolute error (MAE) decreases to 1.33 mm/d. (2) The proposed method can reduce errors under different precipitation intensities and greatly improve the detection capability for strong precipitation. (3) The merged precipitation generated by the proposed method can be used to describe the rainfall–runoff relationship and has good applicability. The proposed method may greatly improve the spatiotemporal accuracy of precipitation in complex terrain areas, which is important for scientific management and the allocation of water resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yuan发布了新的文献求助10
1秒前
qidais完成签到,获得积分10
1秒前
共享精神应助啊嘞嘞采纳,获得10
2秒前
2秒前
爱科研的小多肉完成签到,获得积分10
2秒前
辛勤的谷冬完成签到,获得积分10
2秒前
3秒前
大模型应助孤岛孤岛猫呢采纳,获得30
3秒前
桐桐应助唯美采纳,获得10
3秒前
春风十里完成签到,获得积分10
3秒前
浮华完成签到,获得积分10
3秒前
3秒前
科研通AI5应助lijing采纳,获得10
3秒前
lilivite应助星辰采纳,获得20
3秒前
神可馨发布了新的文献求助10
4秒前
研友_VZG7GZ应助小张z采纳,获得10
5秒前
阿龙完成签到,获得积分10
5秒前
5秒前
puff完成签到,获得积分10
6秒前
cdercder应助魈玖采纳,获得10
7秒前
7秒前
7秒前
没有银发布了新的文献求助10
7秒前
7秒前
泡芙完成签到,获得积分10
8秒前
崔世强完成签到,获得积分10
8秒前
9秒前
9秒前
zhaosiqi完成签到,获得积分10
9秒前
kldjss发布了新的文献求助30
9秒前
王一一完成签到,获得积分10
10秒前
科研通AI5应助111采纳,获得30
10秒前
科研通AI5应助zyz1132采纳,获得10
11秒前
灿烂千阳完成签到,获得积分10
12秒前
jitaimei发布了新的文献求助10
12秒前
可靠向日葵完成签到,获得积分10
12秒前
Xiaoxiao应助boshi采纳,获得10
13秒前
shicp发布了新的文献求助10
13秒前
Read_y完成签到 ,获得积分10
13秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820291
求助须知:如何正确求助?哪些是违规求助? 3363202
关于积分的说明 10421502
捐赠科研通 3081584
什么是DOI,文献DOI怎么找? 1695150
邀请新用户注册赠送积分活动 814934
科研通“疑难数据库(出版商)”最低求助积分说明 768580