Action Recognition and Benchmark Using Event Cameras

事件(粒子物理) 人工智能 计算机科学 水准点(测量) 动作(物理) 代表(政治) 粒度 动作识别 机器学习 模式识别(心理学) 亮度 运动(物理) 计算机视觉 特征提取 深度学习 边距(机器学习) 传感器融合 图像(数学) 对偶(语法数字)
作者
Yue Gao,Jiaxuan Lu,Siqi Li,Nan Ma,Shaoyi Du,Yipeng Li,Qionghai Dai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (12): 14081-14097 被引量:24
标识
DOI:10.1109/tpami.2023.3300741
摘要

Recent years have witnessed remarkable achievements in video-based action recognition. Apart from traditional frame-based cameras, event cameras are bio-inspired vision sensors that only record pixel-wise brightness changes rather than the brightness value. However, little effort has been made in event-based action recognition, and large-scale public datasets are also nearly unavailable. In this paper, we propose an event-based action recognition framework called EV-ACT. The Learnable Multi-Fused Representation (LMFR) is first proposed to integrate multiple event information in a learnable manner. The LMFR with dual temporal granularity is fed into the event-based slow-fast network for the fusion of appearance and motion features. A spatial-temporal attention mechanism is introduced to further enhance the learning capability of action recognition. To prompt research in this direction, we have collected the largest event-based action recognition benchmark named THUE-ACT-50 and the accompanying THUE-ACT-50-CHL dataset under challenging environments, including a total of over 12,830 recordings from 50 action categories, which is over 4 times the size of the previous largest dataset. Experimental results show that our proposed framework could achieve improvements of over 14.5%, 7.6%, 11.2%, and 7.4% compared to previous works on four benchmarks. We have also deployed our proposed EV-ACT framework on a mobile platform to validate its practicality and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yyy完成签到,获得积分10
刚刚
来者完成签到,获得积分10
1秒前
大个应助完美的帽子采纳,获得10
1秒前
鳗鱼忘幽完成签到 ,获得积分10
1秒前
头孢西丁完成签到 ,获得积分10
1秒前
2秒前
科研捣蛋鬼完成签到,获得积分10
2秒前
小马甲应助复杂曼梅采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
打打应助Kenny采纳,获得10
4秒前
4秒前
5秒前
6秒前
寒梅发布了新的文献求助10
6秒前
6秒前
6秒前
失眠语海完成签到 ,获得积分10
7秒前
顾矜应助NGU采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
何my完成签到 ,获得积分10
9秒前
Lexcellent发布了新的文献求助10
9秒前
豆芽完成签到,获得积分10
9秒前
我想学习完成签到 ,获得积分10
9秒前
可爱的函函应助jwjzsznb采纳,获得10
10秒前
10秒前
李明发布了新的文献求助10
11秒前
复杂曼梅完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
豆芽发布了新的文献求助10
12秒前
无花果应助xiao采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297129
求助须知:如何正确求助?哪些是违规求助? 4446068
关于积分的说明 13838325
捐赠科研通 4331226
什么是DOI,文献DOI怎么找? 2377460
邀请新用户注册赠送积分活动 1372740
关于科研通互助平台的介绍 1338303