Point Cloud Completion of Plant Leaves under Occlusion Conditions Based on Deep Learning

点云 RGB颜色模型 均方误差 人工智能 计算机科学 点(几何) 深度学习 数学 园艺 统计 生物 几何学
作者
Haibo Chen,Shengbo Liu,Congyue Wang,Chaofeng Wang,Kangye Gong,Yuanhong Li,Yubin Lan
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:5 被引量:7
标识
DOI:10.34133/plantphenomics.0117
摘要

The utilization of 3-dimensional point cloud technology for non-invasive measurement of plant phenotypic parameters can furnish important data for plant breeding, agricultural production, and diverse research applications. Nevertheless, the utilization of depth sensors and other tools for capturing plant point clouds often results in missing and incomplete data due to the limitations of 2.5D imaging features and leaf occlusion. This drawback obstructed the accurate extraction of phenotypic parameters. Hence, this study presented a solution for incomplete flowering Chinese Cabbage point clouds using Point Fractal Network-based techniques. The study performed experiments on flowering Chinese Cabbage by constructing a point cloud dataset of their leaves and training the network. The findings demonstrated that our network is stable and robust, as it can effectively complete diverse leaf point cloud morphologies, missing ratios, and multi-missing scenarios. A novel framework is presented for 3D plant reconstruction using a single-view RGB-D (Red, Green, Blue and Depth) image. This method leveraged deep learning to complete localized incomplete leaf point clouds acquired by RGB-D cameras under occlusion conditions. Additionally, the extracted leaf area parameters, based on triangular mesh, were compared with the measured values. The outcomes revealed that prior to the point cloud completion, the R 2 value of the flowering Chinese Cabbage’s estimated leaf area (in comparison to the standard reference value) was 0.9162. The root mean square error (RMSE) was 15.88 cm 2 , and the average relative error was 22.11%. However, post-completion, the estimated value of leaf area witnessed a significant improvement, with an R 2 of 0.9637, an RMSE of 6.79 cm 2 , and average relative error of 8.82%. The accuracy of estimating the phenotypic parameters has been enhanced significantly, enabling efficient retrieval of such parameters. This development offers a fresh perspective for non-destructive identification of plant phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Xiaoxiao应助樊珩采纳,获得10
2秒前
2秒前
Hermit发布了新的文献求助10
4秒前
sherry发布了新的文献求助20
4秒前
Jenny完成签到,获得积分10
6秒前
yudandan@CJLU发布了新的文献求助10
7秒前
善良的剑通应助樊珩采纳,获得10
8秒前
fcgcgfcgf发布了新的文献求助10
8秒前
9秒前
10秒前
慕青应助火星上惜蕊采纳,获得10
11秒前
iNk应助樊珩采纳,获得10
11秒前
超体完成签到 ,获得积分10
12秒前
酷炫冰绿发布了新的文献求助10
15秒前
15秒前
15秒前
善良的剑通应助樊珩采纳,获得10
15秒前
周少完成签到,获得积分10
17秒前
手抓饼啊发布了新的文献求助10
17秒前
18秒前
Shining_Wu发布了新的文献求助10
19秒前
鱼儿想游完成签到,获得积分10
19秒前
852应助甩看文献采纳,获得10
19秒前
19秒前
希望天下0贩的0应助keira采纳,获得10
20秒前
bkagyin应助稳重元蝶采纳,获得30
22秒前
yudandan@CJLU完成签到,获得积分10
22秒前
zho发布了新的文献求助10
24秒前
老王爱学习完成签到,获得积分10
26秒前
希望天下0贩的0应助sherry采纳,获得10
26秒前
26秒前
彭于晏应助Hermit采纳,获得10
27秒前
29秒前
orixero应助科研通管家采纳,获得10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
31秒前
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779955
求助须知:如何正确求助?哪些是违规求助? 3325373
关于积分的说明 10222612
捐赠科研通 3040542
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612