A collaborative iterated greedy algorithm with reinforcement learning for energy-aware distributed blocking flow-shop scheduling

计算机科学 作业车间调度 数学优化 强化学习 流水车间调度 能源消耗 整数规划 调度(生产过程) 高效能源利用 算法 人工智能 数学 地铁列车时刻表 生态学 电气工程 生物 工程类 操作系统
作者
Haizhu Bao,Quan-Ke Pan,Rubén Ruíz,Liang Gao
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:83: 101399-101399 被引量:20
标识
DOI:10.1016/j.swevo.2023.101399
摘要

Energy-aware scheduling has attracted increasing attention mainly due to economic benefits as well as reducing the carbon footprint at companies. In this paper, an energy-aware scheduling problem in a distributed blocking flow-shop with sequence-dependent setup times is investigated to minimize both makespan and total energy consumption. A mixed-integer linear programming model is constructed and a cooperative iterated greedy algorithm based on Q-learning (CIG) is proposed. In the CIG, a top-level Q-learning is focused on enhancing the utilization ratio of machines to minimize makespan by finding a scheduling policy from four sequence-related operations. A bottom-level Q-learning is centered on improving energy efficiency to reduce total energy consumption by learning the optimal speed governing policy from four speed-related operations. According to the structure characteristics of solutions, several properties are explored to design an energy-saving strategy and acceleration strategy. The experimental results and statistical analysis prove that the CIG is superior to the state-of-the-art competitors with improvement percentages of 20.16 % over 2880 instances from the well-known benchmark set in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Puddingo完成签到,获得积分10
2秒前
xiaoxiao发布了新的文献求助10
3秒前
小储应助HEAUBOOK采纳,获得10
4秒前
失眠醉易应助HEAUBOOK采纳,获得10
4秒前
Lucas应助HEAUBOOK采纳,获得10
4秒前
7秒前
Narcissus完成签到,获得积分10
9秒前
12秒前
登山人发布了新的文献求助10
12秒前
长歌完成签到,获得积分10
13秒前
什么什么东西完成签到,获得积分10
15秒前
15秒前
17秒前
xxxxxxlp完成签到,获得积分10
18秒前
欣喜沛芹完成签到,获得积分10
19秒前
淡定的夏青完成签到,获得积分10
19秒前
笨笨完成签到,获得积分10
21秒前
优秀的莹发布了新的文献求助10
21秒前
酷炫醉山完成签到,获得积分10
21秒前
22秒前
Sea_U发布了新的文献求助10
22秒前
框郑完成签到 ,获得积分10
23秒前
屠夫9441完成签到 ,获得积分10
25秒前
仙贝发布了新的文献求助10
28秒前
Anyixx完成签到 ,获得积分10
28秒前
思源应助学习使我快乐1917采纳,获得10
30秒前
32秒前
LI完成签到,获得积分10
32秒前
tree完成签到,获得积分10
34秒前
科研通AI5应助优秀的莹采纳,获得30
36秒前
36秒前
诺诺完成签到 ,获得积分10
36秒前
内向绿竹应助山淮采纳,获得10
37秒前
科研通AI5应助Russell采纳,获得10
38秒前
研友_VZG7GZ应助仙贝采纳,获得10
38秒前
专注的傲之完成签到,获得积分20
38秒前
39秒前
个木发布了新的文献求助10
40秒前
zzz完成签到,获得积分10
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742