TransAttUnet: Multi-Level Attention-Guided U-Net With Transformer for Medical Image Segmentation

编码器 判别式 变压器 像素 计算机科学 人工智能 模式识别(心理学) 图像分割 分割 计算机视觉 电压 量子力学 操作系统 物理
作者
Bingzhi Chen,Yishu Liu,Zheng Zhang,Guangming Lu,Adams Wai‐Kin Kong
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 55-68 被引量:291
标识
DOI:10.1109/tetci.2023.3309626
摘要

Accurate segmentation of organs or lesions from medical images is crucial for reliable diagnosis of diseases and organ morphometry. In recent years, convolutional encoder-decoder solutions have achieved substantial progress in the field of automatic medical image segmentation. Due to the inherent bias in the convolution operations, prior models mainly focus on local visual cues formed by the neighboring pixels, but fail to fully model the long-range contextual dependencies. In this article, we propose a novel Transformer-based Attention Guided Network called TransAttUnet , in which the multi-level guided attention and multi-scale skip connection are designed to jointly enhance the performance of the semantical segmentation architecture. Inspired by Transformer, the self-aware attention (SAA) module with Transformer Self Attention (TSA) and Global Spatial Attention (GSA) is incorporated into TransAttUnet to effectively learn the non-local interactions among encoder features. Moreover, we also use additional multi-scale skip connections between decoder blocks to aggregate the upsampled features with different semantic scales. In this way, the representation ability of multi-scale context information is strengthened to generate discriminative features. Benefitting from these complementary components, the proposed TransAttUnet can effectively alleviate the loss of fine details caused by the stacking of convolution layers and the consecutive sampling operations, finally improving the segmentation quality of medical images. Extensive experiments were conducted on multiple medical image segmentation datasets from various imaging modalities, which demonstrate that the proposed method consistently outperforms the existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
俊逸成危发布了新的文献求助10
1秒前
kk发布了新的文献求助30
2秒前
2秒前
2秒前
香蕉觅云应助飞机采纳,获得10
3秒前
郁赹发布了新的文献求助10
3秒前
4秒前
tao完成签到,获得积分20
5秒前
6秒前
桃月二九完成签到,获得积分10
6秒前
112发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
搜集达人应助辛勤笑旋采纳,获得10
7秒前
无极微光应助四夕采纳,获得20
8秒前
Zx_1993应助奕霖采纳,获得10
8秒前
zxy发布了新的文献求助10
9秒前
木头人应助Sorexking采纳,获得50
9秒前
无聊的寻梅完成签到,获得积分10
11秒前
11秒前
Jerry完成签到,获得积分10
12秒前
112完成签到,获得积分10
14秒前
sssss完成签到 ,获得积分10
14秒前
正直清炎发布了新的文献求助10
15秒前
刺猬发布了新的文献求助10
15秒前
华仔应助意义采纳,获得10
17秒前
17秒前
18秒前
18秒前
情怀应助Jerry采纳,获得10
18秒前
FashionBoy应助沉静的蜗牛采纳,获得10
19秒前
科研通AI6应助沉静的蜗牛采纳,获得10
19秒前
绿刺猬完成签到 ,获得积分10
19秒前
激昂的不乐完成签到,获得积分10
19秒前
19秒前
华仔应助喜欢月亮魔法师采纳,获得10
21秒前
李爱国应助千山孤风采纳,获得10
23秒前
kk完成签到,获得积分20
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521585
求助须知:如何正确求助?哪些是违规求助? 4612927
关于积分的说明 14536362
捐赠科研通 4550430
什么是DOI,文献DOI怎么找? 2493661
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446233