Self-Supervised Triplet Contrastive Learning for Classifying Endometrial Histopathological Images

人工智能 计算机科学 模式识别(心理学) 自然语言处理
作者
Fengjun Zhao,Zhiwei Wang,Hongyan Du,Xiaowei He,Xin Cao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (12): 5970-5981 被引量:2
标识
DOI:10.1109/jbhi.2023.3314663
摘要

Early identification of endometrial cancer or precancerous lesions from histopathological images is crucial for precise endometrial medical care, which however is increasing hampered by the relative scarcity of pathologists. Computer-aided diagnosis (CAD) provides an automated alternative for confirming endometrial diseases with either feature-engineered machine learning or end-to-end deep learning (DL). In particular, advanced self-supervised learning alleviates the dependence of supervised learning on large-scale human-annotated data and can be used to pre-train DL models for specific classification tasks. Thereby, we develop a novel self-supervised triplet contrastive learning (SSTCL) model for classifying endometrial histopathological images. Specifically, this model consists of one online branch and two target branches. The second target branch includes a simple yet powerful augmentation module named random mosaic masking (RMM), which functions as an effective regularization by mapping the features of masked images close to those of intact ones. Moreover, we add a bottleneck Transformer (BoT) model into each branch as a self-attention module to learn the global information by considering both content information and relative distances between features at different locations. On public endometrial dataset, our model achieved four-class classification accuracies of 77.31 ± 0.84, 80.87 ± 0.48 and 83.22 ± 0.87% using 20, 50 and 100% labeled images, respectively. When transferred to the in-house dataset, our model obtained a three-class diagnostic accuracy of 96.81% with 95% confidence interval of 95.61-98.02%. On both datasets, our model outperformed state-of-the-art supervised and self-supervised methods. Our model may help pathologists to automatically diagnose endometrial diseases with high accuracy and efficiency using limited human-annotated histopathological images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达代芹完成签到,获得积分10
刚刚
1秒前
LI发布了新的文献求助10
1秒前
机智采枫完成签到 ,获得积分10
1秒前
Lven完成签到,获得积分10
2秒前
小小月完成签到 ,获得积分10
2秒前
weizhi完成签到,获得积分10
2秒前
Hyg完成签到 ,获得积分10
2秒前
谷飞飞完成签到,获得积分10
3秒前
悦耳从彤完成签到,获得积分10
3秒前
欣喜念梦完成签到,获得积分10
4秒前
zhaosh完成签到,获得积分10
4秒前
筋筋子完成签到,获得积分10
4秒前
4秒前
4秒前
北海完成签到,获得积分10
5秒前
白桃战士完成签到,获得积分10
5秒前
英姑应助Cyril采纳,获得100
7秒前
7秒前
wzg666完成签到,获得积分10
7秒前
乐乐应助清脆仙人掌采纳,获得30
8秒前
8秒前
8秒前
王m完成签到 ,获得积分10
8秒前
蕊蕊蕊完成签到 ,获得积分10
8秒前
9秒前
NicheFactor完成签到,获得积分10
9秒前
waive完成签到,获得积分10
9秒前
鲁鲁完成签到 ,获得积分10
9秒前
遇见未来完成签到,获得积分10
9秒前
10秒前
PT177245发布了新的文献求助10
10秒前
GYF完成签到,获得积分10
10秒前
脑洞疼应助One采纳,获得10
10秒前
斯文败类应助浅兮采纳,获得10
10秒前
10秒前
11秒前
BCEMTZ完成签到,获得积分10
11秒前
11秒前
zhang26xian完成签到,获得积分10
11秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369808
关于积分的说明 10458344
捐赠科研通 3089517
什么是DOI,文献DOI怎么找? 1699957
邀请新用户注册赠送积分活动 817567
科研通“疑难数据库(出版商)”最低求助积分说明 770269