Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

计算机科学 航空学 航测 航空航天工程 遥感 人工智能 人机交互 地理 工程类
作者
Harrison Kurunathan,Hailong Huang,Kai Li,Wei Ni,Ekram Hossain
出处
期刊:IEEE Communications Surveys and Tutorials [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 496-533 被引量:84
标识
DOI:10.1109/comst.2023.3312221
摘要

Over the past decade, Unmanned Aerial Vehicles (UAVs) have provided pervasive, efficient, and cost-effective solutions for data collection and communications. Their excellent mobility, flexibility, and fast deployment enable UAVs to be extensively utilized in agriculture, medical, rescue missions, smart cities, and intelligent transportation systems. Machine learning (ML) has been increasingly demonstrating its capability of improving the automation and operation precision of UAVs and many UAV-assisted applications, such as communications, sensing, and data collection. The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasize the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before the full automation of UAVs and potential cooperation between UAVs and humans come to fruition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹飒丽完成签到,获得积分10
刚刚
bkagyin应助poce采纳,获得10
刚刚
2秒前
爆米花应助ZSC采纳,获得10
2秒前
我是老大应助王蕊采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
hhhhh发布了新的文献求助10
5秒前
彩虹猫发布了新的文献求助10
5秒前
xrq完成签到,获得积分10
5秒前
pluto应助ifly采纳,获得10
5秒前
6秒前
犹豫怜南发布了新的文献求助20
8秒前
10秒前
10秒前
10秒前
11秒前
11秒前
HITvagary完成签到,获得积分0
12秒前
不敢装睡完成签到,获得积分10
12秒前
13秒前
聂落雁完成签到,获得积分10
13秒前
芋泥丸丸发布了新的文献求助10
13秒前
xuejie驳回了慕青应助
13秒前
ZSC发布了新的文献求助10
14秒前
14秒前
跳跃发布了新的文献求助10
15秒前
追寻梦之发布了新的文献求助10
15秒前
15秒前
16秒前
小庄完成签到 ,获得积分10
16秒前
大胆的弼完成签到,获得积分10
17秒前
17秒前
yiyi发布了新的文献求助10
17秒前
ruru发布了新的文献求助10
17秒前
18秒前
可爱的函函应助辉腾采纳,获得10
18秒前
18秒前
王蕊发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653296
求助须知:如何正确求助?哪些是违规求助? 4789685
关于积分的说明 15063648
捐赠科研通 4811856
什么是DOI,文献DOI怎么找? 2574143
邀请新用户注册赠送积分活动 1529815
关于科研通互助平台的介绍 1488524