Detection model transfer of apple soluble solids content based on NIR spectroscopy and deep learning

近红外光谱 自编码 人工神经网络 均方误差 相关系数 计算机科学 人工智能 深度学习 光学(聚焦) 学习迁移 生物系统 模式识别(心理学) 数学 机器学习 统计 光学 物理 生物
作者
Zhiming Guo,Yiyin Zhang,Junyi Wang,Yuanyuan Liu,Heera Jayan,Hesham R. El‐Seedi,Stella M. Alzamora,Paula L. Gómez,Xiaobo Zou
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108127-108127 被引量:53
标识
DOI:10.1016/j.compag.2023.108127
摘要

Transfer and updating of near infrared (NIR) spectroscopy model of fruit internal quality has become the focus of the industrial application. Internet of Things (IoT) and deep learning (DL) were proposed to perform soluble solids content (SSC) model transfer of apple by NIR. A model transfer platform including low-power handheld internal quality terminal and interacting cloud data system had been constructed. An autoencoder (AE) neural network model was developed for the spectral correction and model transfer. The average time for transmitting detection results to the detection terminal was 1.5 to 2.0 s, with a 100% effective transmission rate. After 5000 iterations of training, the correlation coefficient of different detection terminals improved by 55%, and the root mean square error was reduced by 94%. Selected samples from the second batch of apples detected by the No. 1 detection terminal were added to the original neural network for training. After adding 30 samples, the correlation coefficient increased by 13% and the root mean square error decreased by 90%. The results demonstrated that the AE neural network for spectral correction was effective in eliminating differences between devices and significantly reducing the impact of different detection terminals on the accuracy of NIR detection of SSC in apples. Therefore, the NIR detection model transfer technique could be practically exploited for fruit quality control assessment using different detection terminals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hamzhang0426完成签到,获得积分10
刚刚
所所应助狂野的采纳,获得10
1秒前
ouLniM发布了新的文献求助10
1秒前
科研通AI5应助yangdage采纳,获得10
1秒前
zwhy发布了新的文献求助10
1秒前
火炬计划完成签到,获得积分20
1秒前
科研通AI5应助劣根采纳,获得10
2秒前
2秒前
yu发布了新的文献求助10
2秒前
爆米花应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
冰冰完成签到,获得积分10
3秒前
在水一方应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
潇湘完成签到,获得积分20
4秒前
顾矜应助科研通管家采纳,获得30
4秒前
4秒前
元万天应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
肥仔快乐水完成签到 ,获得积分10
7秒前
bkagyin应助Glitter采纳,获得10
7秒前
piaoaxi完成签到 ,获得积分10
7秒前
动漫大师发布了新的文献求助20
7秒前
科目三应助cc采纳,获得10
8秒前
仁爱的雁芙完成签到,获得积分10
8秒前
ll完成签到,获得积分10
9秒前
朱先生完成签到 ,获得积分10
9秒前
9秒前
tiger完成签到 ,获得积分10
10秒前
ming完成签到,获得积分20
10秒前
10秒前
Liou应助WXR采纳,获得10
10秒前
wu发布了新的文献求助10
10秒前
12秒前
夕赣发布了新的文献求助10
12秒前
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804835
求助须知:如何正确求助?哪些是违规求助? 3349925
关于积分的说明 10346344
捐赠科研通 3065759
什么是DOI,文献DOI怎么找? 1683265
邀请新用户注册赠送积分活动 808800
科研通“疑难数据库(出版商)”最低求助积分说明 764915