Fundus Image Enhancement via Semi-Supervised GAN and Anatomical Structure Preservation

计算机科学 人工智能 眼底(子宫) 计算机视觉 图像质量 糖尿病性视网膜病变 分割 生成对抗网络 模式识别(心理学) 深度学习 图像(数学) 医学 眼科 糖尿病 内分泌学
作者
Hao‐Tian Wu,Xin Cao,Ying Gao,Kaihan Zheng,Jiwu Huang,Jiankun Hu,Zhihong Tian
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 313-326 被引量:9
标识
DOI:10.1109/tetci.2023.3301337
摘要

The fundus image is often used in clinical diagnosis due to ease and safety of acquisition, but the quality may be affected by environment and onsite operations. As low-quality medical images may lead to misinterpretation in diagnosis and analysis, it is important to improve quality of the improperly-acquired fundus images. Unfortunately, the existing fundus image enhancement methods require task-specific prior knowledge or suffer from insufficient generalization ability. To cope with this issue, a generative adversarial network (GAN) based model is proposed, namely the semi-supervised GAN with anatomical structure preservation (SSGAN-ASP). Specifically, an anatomical structure extraction component is employed in the generator to guide the enhancement process by preserving both retinal and lesion structures, while color information in the fundus image is also preserved. The SSGAN-ASP model is evaluated and compared with the state-of-the-art methods for medical image enhancement on three popular datasets. In addition, it is applied in the pre-processing of retinal vessel segmentation and diabetic retinopathy grading tasks to show efficacy in computer-aided diagnosis. Experimental results demonstrate that visual quality of the enhanced image can be improved while better performance in clinical diagnosis is achieved with our proposed model by adopting the anatomical structure extraction component and preserving color information as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助susu采纳,获得10
1秒前
1秒前
晴朗发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
一只松鼠关注了科研通微信公众号
2秒前
汉堡包应助TANGTANG采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得30
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
Entropy发布了新的文献求助10
4秒前
welbeck发布了新的文献求助10
4秒前
Starry完成签到 ,获得积分10
4秒前
5秒前
HanlinLiu发布了新的文献求助10
5秒前
6秒前
cc发布了新的文献求助10
6秒前
北城发布了新的文献求助10
7秒前
机智的飞飞完成签到,获得积分10
7秒前
111发布了新的文献求助10
7秒前
yaya发布了新的文献求助10
7秒前
深情安青应助愉快的真采纳,获得50
7秒前
zhou默完成签到,获得积分10
7秒前
shuibizai完成签到,获得积分10
8秒前
zxy完成签到,获得积分10
8秒前
852应助坦率的刺猬采纳,获得10
8秒前
9秒前
充电宝应助迷路的秋采纳,获得10
9秒前
Kaiwei关注了科研通微信公众号
9秒前
HJJHJH应助FANMENGEN采纳,获得30
9秒前
permanent发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463475
求助须知:如何正确求助?哪些是违规求助? 3926144
关于积分的说明 12183570
捐赠科研通 3578776
什么是DOI,文献DOI怎么找? 1966154
邀请新用户注册赠送积分活动 1004867
科研通“疑难数据库(出版商)”最低求助积分说明 899296