DHT-Net: Dynamic Hierarchical Transformer Network for Liver and Tumor Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 变压器 量子力学 物理 电压
作者
Ruiyang Li,Longchang Xu,Kun Xie,Jianfeng Song,Xiaowen Ma,Liang Chang,Qingsen Yan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (7): 3443-3454 被引量:38
标识
DOI:10.1109/jbhi.2023.3268218
摘要

Automatic segmentation of liver tumors is crucial to assist radiologists in clinical diagnosis. While various deep learningbased algorithms have been proposed, such as U-Net and its variants, the inability to explicitly model long-range dependencies in CNN limits the extraction of complex tumor features. Some researchers have applied Transformer-based 3D networks to analyze medical images. However, the previous methods focus on modeling the local information (eg. edge) or global information (eg. morphology) with fixed network weights. To learn and extract complex tumor features of varied tumor size, location, and morphology for more accurate segmentation, we propose a Dynamic Hierarchical Transformer Network, named DHT-Net. The DHT-Net mainly contains a Dynamic Hierarchical Transformer (DHTrans) structure and an Edge Aggregation Block (EAB). The DHTrans first automatically senses the tumor location by Dynamic Adaptive Convolution, which employs hierarchical operations with the different receptive field sizes to learn the features of various tumors, thus enhancing the semantic representation ability of tumor features. Then, to adequately capture the irregular morphological features in the tumor region, DHTrans aggregates global and local texture information in a complementary manner. In addition, we introduce the EAB to extract detailed edge features in the shallow fine-grained details of the network, which provides sharp boundaries of liver and tumor regions. We evaluate DHT-Net on two challenging public datasets, LiTS and 3DIRCADb. The proposed method has shown superior liver and tumor segmentation performance compared to several state-of-the-art 2D, 3D, and 2.5D hybrid models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
勤恳的kk完成签到,获得积分10
1秒前
汉堡包应助六元采纳,获得10
2秒前
2秒前
dzll完成签到,获得积分10
2秒前
奋斗向南发布了新的文献求助10
2秒前
憨憨完成签到,获得积分10
3秒前
英姑应助潮流季采纳,获得10
3秒前
4秒前
慕青应助某人采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
orixero应助夏咲咏采纳,获得10
6秒前
三金发布了新的文献求助10
7秒前
unique发布了新的文献求助10
8秒前
11秒前
12秒前
bkagyin应助jy采纳,获得10
13秒前
王世卉完成签到,获得积分10
13秒前
爆米花应助LPL采纳,获得10
13秒前
小白熊应助111采纳,获得10
13秒前
14秒前
科研通AI6.1应助荞麦采纳,获得10
15秒前
万能图书馆应助Wynne采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
testmanfuxk完成签到,获得积分10
17秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
CipherSage应助科研通管家采纳,获得10
18秒前
DTOU应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
奋斗向南完成签到,获得积分10
18秒前
18秒前
Owen应助科研通管家采纳,获得10
18秒前
18秒前
wt发布了新的文献求助10
18秒前
Lucas应助科研通管家采纳,获得10
19秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382