Role of Inflammatory Markers and Doppler Parameters in Late-Onset Fetal Growth Restriction: A Machine Learning Approach

胎儿生长 胎儿 多普勒效应 内科学 计算机科学 人工智能 医学 生物 怀孕 遗传学 物理 天文
作者
Can Ozan Ulusoy,Ahmet Kurt,Zeynep Şeyhanlı,Burak Hızlı,Mevlüt Bucak,Recep Taha Ağaoğlu,Yüksel Oğuz,Kadriye Yakut Yücel
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4864163/v1
摘要

Abstract Objectives This study evaluates the association of novel inflammatory markers and Doppler parameters in late-onset FGR, utilizing a machine learning approach to enhance predictive accuracy. Materials and methods A retrospective case-control study was conducted at the Department of Perinatology, Ministry of Health Etlik City Hospital, Ankara, from 2023 to 2024. The study included 240 patients between 32–37 weeks of gestation, divided equally between patients diagnosed with late-onset FGR and a control group. We focused on novel inflammatory markers—systemic immune-inflammation index (SII), systemic inflammatory response index (SIRI), and neutrophil-percentage-to-albumin ratio (NPAR)—and their correlation with Doppler parameters of umbilical and uterine arteries. Machine learning algorithms were employed to analyze data collected, including demographic, neonatal, and clinical parameters, to develop a predictive model for FGR. Results The machine learning model, specifically the Random Forest algorithm, effectively integrated the inflammatory markers with Doppler parameters to predict FGR. NPAR showed a significant correlation with FGR presence, providing a robust tool in the predictive model. In contrast, SII and SIRI, while useful, did not achieve the same level of predictive accuracy. The model highlighted the potential of combining ultrasound measurements with inflammatory markers to improve diagnostic accuracy for late-onset FGR. Conclusions This study illustrates the efficacy of integrating machine learning with traditional diagnostic methods to enhance the prediction of late-onset FGR. Further research with a larger cohort is recommended to validate these findings and refine the predictive model, which could lead to improved clinical outcomes for affected pregnancies. The take-home message: This study demonstrates that combining novel inflammatory markers, particularly the neutrophil-percentage-to-albumin ratio (NPAR) and the systemic immune-inflammation index (SII), with Doppler ultrasound parameters can significantly improve the prediction accuracy of late-onset fetal growth restriction (FGR) using a machine learning approach. This integration of machine learning with traditional diagnostic methods provides a more robust and cost-effective tool for the early diagnosis and management of FGR in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助smin采纳,获得10
4秒前
行舟完成签到 ,获得积分10
4秒前
小二郎应助幸福幻灵采纳,获得10
4秒前
orixero应助candy9527采纳,获得10
5秒前
7秒前
lin发布了新的文献求助10
9秒前
科研通AI5应助lunaxia采纳,获得10
9秒前
Dsxxx发布了新的文献求助10
9秒前
11秒前
12秒前
drtianyunhong发布了新的文献求助10
12秒前
贰鸟应助张凤采纳,获得10
12秒前
李爱国应助无情的宛儿采纳,获得10
13秒前
馒头发布了新的文献求助30
13秒前
bd发布了新的文献求助20
14秒前
Ava应助博修采纳,获得10
15秒前
15秒前
李健的粉丝团团长应助ZLY采纳,获得10
16秒前
Dsxxx完成签到,获得积分20
17秒前
www完成签到,获得积分10
17秒前
17秒前
领导范儿应助smin采纳,获得10
18秒前
沈访枫完成签到,获得积分20
18秒前
19秒前
FF发布了新的文献求助10
19秒前
vvA11应助lin采纳,获得10
20秒前
YC发布了新的文献求助10
20秒前
22秒前
22秒前
23秒前
共享精神应助科研通管家采纳,获得10
23秒前
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
24秒前
SciGPT应助科研通管家采纳,获得20
24秒前
Owen应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
矛头蝮应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4196130
求助须知:如何正确求助?哪些是违规求助? 3731931
关于积分的说明 11753270
捐赠科研通 3406318
什么是DOI,文献DOI怎么找? 1869033
邀请新用户注册赠送积分活动 925135
科研通“疑难数据库(出版商)”最低求助积分说明 835663