Predicting Late Gadolinium Enhancement of Acute Myocardial Infarction in Contrast-Free Cardiac Cine MRI Using Deep Generative Learning

医学 心肌梗塞 磁共振成像 对比度(视觉) 心脏病学 心脏磁共振 对比度增强 内科学 放射科 人工智能 计算机科学 冶金 材料科学
作者
Haikun Qi,Pengfang Qian,Langlang Tang,Binghua Chen,Dong‐Aolei An,Lian-Ming Wu
出处
期刊:Circulation-cardiovascular Imaging [Lippincott Williams & Wilkins]
被引量:2
标识
DOI:10.1161/circimaging.124.016786
摘要

BACKGROUND: Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is a standard technique for diagnosing myocardial infarction (MI), which, however, poses risks due to gadolinium contrast usage. Techniques enabling MI assessment based on contrast-free CMR are desirable to overcome the limitations associated with contrast enhancement. METHODS: We introduce a novel deep generative learning method, termed cine-generated enhancement (CGE), which transforms standard contrast-free cine CMR into LGE-equivalent images for MI assessment. CGE features with multislice spatiotemporal feature extractor, enhancement contrast modulation, and sophisticated loss function. Data from 430 patients with acute MI from 3 centers were collected. After image quality control, 1525 pairs (289 patients) of center I were used for training, and 293 slices (52 patients) of the same center were reserved for internal testing. The 40 patients (401 slices) of the other 2 centers were used for external testing. The CGE robustness was further tested in 20 normal subjects in a public cine CMR data set. CGE images were compared with LGE for image quality assessment and MI quantification regarding scar size and transmurality. RESULTS: The CGE method produced images of superior quality to LGE in both internal and external data sets. There was a significant ( P <0.001) correlation between CGE and LGE measurements of scar size (Pearson correlation, 0.79/0.80; intraclass correlation coefficient, 0.79/0.77) and transmurality (Pearson correlation, 0.76/0.64; intraclass correlation coefficient, 0.76/0.63) in internal/external data set. Considering all data sets, CGE demonstrated high sensitivity (91.27%) and specificity (95.83%) in detecting scars. Realistic enhancement images were obtained for the normal subjects in the public data set without false positive subjects. CONCLUSIONS: CGE achieved superior image quality to LGE and accurate scar delineation in patients with acute MI of both internal and external data sets. CGE can significantly simplify the CMR examination, reducing scan times and risks associated with gadolinium-based contrasts, which are crucial for acute patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pwy发布了新的文献求助20
刚刚
Yue发布了新的文献求助10
1秒前
五十一完成签到 ,获得积分10
2秒前
wanci应助幸福诗槐采纳,获得10
3秒前
4秒前
安龙王子完成签到,获得积分10
4秒前
主食圆啊发布了新的文献求助30
4秒前
自由曼卉关注了科研通微信公众号
5秒前
欣喜灯泡发布了新的文献求助10
7秒前
8秒前
9秒前
transition完成签到,获得积分10
10秒前
科研通AI5应助赵康康采纳,获得20
10秒前
阳光发布了新的文献求助10
12秒前
gougou发布了新的文献求助10
12秒前
陈卓完成签到,获得积分10
13秒前
深情白风完成签到 ,获得积分10
15秒前
kmmu0611发布了新的文献求助20
15秒前
所所应助kk采纳,获得10
15秒前
萝卜完成签到,获得积分10
15秒前
17秒前
illuminate完成签到 ,获得积分10
19秒前
爱小妍发布了新的文献求助10
22秒前
冷酷沛柔完成签到,获得积分10
24秒前
25秒前
28秒前
CodeCraft应助mia采纳,获得10
29秒前
gougou完成签到,获得积分10
29秒前
qiuqiu815777发布了新的文献求助10
31秒前
kk发布了新的文献求助10
32秒前
32秒前
阔达斑马应助dkyt采纳,获得20
35秒前
Akim应助Guoqiang采纳,获得10
36秒前
不将就完成签到,获得积分10
37秒前
jianhan发布了新的文献求助10
37秒前
打打应助ZHH采纳,获得10
39秒前
Akim应助大淘采纳,获得10
39秒前
longlonglong完成签到,获得积分10
39秒前
香蕉静芙完成签到 ,获得积分10
40秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781499
求助须知:如何正确求助?哪些是违规求助? 3327165
关于积分的说明 10229864
捐赠科研通 3042037
什么是DOI,文献DOI怎么找? 1669761
邀请新用户注册赠送积分活动 799278
科研通“疑难数据库(出版商)”最低求助积分说明 758757