材料科学
石墨烯
单层
超短脉冲
范德瓦尔斯力
纳米技术
电子线路
比例(比率)
化学物理
光电子学
分子
光学
有机化学
电气工程
量子力学
激光器
工程类
物理
化学
作者
Rahul Sharma,Henry Nameirakpam,David Muradas-Belinchón,Prince Sharma,Ulrich Nguétchuissi Noumbé,Daria Belotcerkovtceva,Elin Berggren,Viliam Vretenár,Ľubomír Vančo,Matúš Maťko,Ravi K. Biroju,Soumitra Satapathi,Tomas Edvinsson,Andreas Lindblad,M. Venkata Kamalakar
标识
DOI:10.1021/acsami.4c07028
摘要
Two-dimensional (2D) van der Waals heterostructures combine the distinct properties of individual 2D materials, resulting in metamaterials, ideal for emergent electronic, optoelectronic, and spintronic phenomena. A significant challenge in harnessing these properties for future hybrid circuits is their large-scale realization and integration into graphene interconnects. In this work, we demonstrate the direct growth of molybdenum disulfide (MoS2) crystals on patterned graphene channels. By enhancing control over vapor transport through a confined space chemical vapor deposition growth technique, we achieve the preferential deposition of monolayer MoS2 crystals on monolayer graphene. Atomic resolution scanning transmission electron microscopy reveals the high structural integrity of the heterostructures. Through in-depth spectroscopic characterization, we unveil charge transfer in Graphene/MoS2, with MoS2 introducing p-type doping to graphene, as confirmed by our electrical measurements. Photoconductivity characterization shows that photoactive regions can be locally created in graphene channels covered by MoS2 layers. Time-resolved ultrafast transient absorption (TA) spectroscopy reveals accelerated charge decay kinetics in Graphene/MoS2 heterostructures compared to standalone MoS2 and upconversion for below band gap excitation conditions. Our proof-of-concept results pave the way for the direct growth of van der Waals heterostructure circuits with significant implications for ultrafast photoactive nanoelectronics and optospintronic applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI