已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GEO: Generative Engine Optimization

计算机科学 生成语法 人工智能
作者
Pranjal Aggarwal,Vishvak Murahari,Tanmay Rajpurohit,Ashwin Kalyan,Karthik Narasimhan,Ameet Deshpande
标识
DOI:10.1145/3637528.3671900
摘要

The advent of large language models (LLMs) has ushered in a new paradigm of search engines that use generative models to gather and summarize information to answer user queries. This emerging technology, which we formalize under the unified framework of generative engines (GEs), can generate accurate and personalized responses, rapidly replacing traditional search engines like Google and Bing. Generative Engines typically satisfy queries by synthesizing information from multiple sources and summarizing them using LLMs. While this shift significantly improvesuser utility and generative search engine traffic, it poses a huge challenge for the third stakeholder -- website and content creators. Given the black-box and fast-moving nature of generative engines, content creators have little to no control over when and how their content is displayed. With generative engines here to stay, we must ensure the creator economy is not disadvantaged. To address this, we introduce Generative Engine Optimization (GEO), the first novel paradigm to aid content creators in improving their content visibility in generative engine responses through a flexible black-box optimization framework for optimizing and defining visibility metrics. We facilitate systematic evaluation by introducing GEO-bench, a large-scale benchmark of diverse user queries across multiple domains, along with relevant web sources to answer these queries. Through rigorous evaluation, we demonstrate that GEO can boost visibility by up to 40% in generative engine responses. Moreover, we show the efficacy of these strategies varies across domains, underscoring the need for domain-specific optimization methods. Our work opens a new frontier in information discovery systems, with profound implications for both developers of generative engines and content creators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
地表飞猪应助hyxu678采纳,获得10
6秒前
CipherSage应助ddd采纳,获得10
7秒前
JSJ完成签到,获得积分20
7秒前
Master-wang完成签到,获得积分10
8秒前
8秒前
科研饼发布了新的文献求助10
11秒前
科研通AI5应助LDB采纳,获得10
13秒前
13秒前
科研通AI5应助dnmd采纳,获得10
17秒前
ddd发布了新的文献求助10
17秒前
酷波er应助星星点灯采纳,获得10
18秒前
666发布了新的文献求助10
19秒前
bbll完成签到,获得积分10
21秒前
guagua完成签到,获得积分10
22秒前
嘻嘻完成签到 ,获得积分10
25秒前
Ken酱完成签到,获得积分10
25秒前
25秒前
25秒前
wsyiming发布了新的文献求助10
29秒前
足下慵才完成签到,获得积分10
30秒前
愉快夕阳发布了新的文献求助20
31秒前
丘比特应助科研饼采纳,获得10
32秒前
32秒前
超级无敌大顺利完成签到 ,获得积分10
33秒前
34秒前
35秒前
冯微微发布了新的文献求助10
36秒前
正直的飞瑶完成签到,获得积分10
38秒前
田様应助足下慵才采纳,获得10
39秒前
qi发布了新的文献求助10
39秒前
dnmd发布了新的文献求助10
40秒前
40秒前
wsyiming完成签到,获得积分10
42秒前
45秒前
45秒前
46秒前
芝士完成签到,获得积分10
47秒前
JYY完成签到 ,获得积分10
48秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
The acute effects of performing drop jumps of different intensities on concentric squat strength 200
Erectile dysfunction From bench to bedside 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824803
求助须知:如何正确求助?哪些是违规求助? 3367126
关于积分的说明 10444462
捐赠科研通 3086408
什么是DOI,文献DOI怎么找? 1697985
邀请新用户注册赠送积分活动 816625
科研通“疑难数据库(出版商)”最低求助积分说明 769840