亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A versatile attention-based neural network for chemical perturbation analysis and its potential to aid surgical treatment: A experimental study

药效团 医学 可解释性 深度学习 机器学习 计算生物学 虚拟筛选 数据挖掘 生物信息学 人工智能 生物 计算机科学
作者
Zheqi Fan,Houming Zhao,Jingcheng Zhou,Dingchang Li,Yunlong Fan,Yiming Bi,Shuaifei Ji
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000001781
摘要

Deep learning models have emerged as rapid, accurate, and effective approaches for clinical decisions. Through a combination of drug screening and deep learning models, drugs that may benefit patients before and after surgery can be discovered to reduce the risk of complications or speed recovery. However, most existing drug prediction methods have high data requirements and lack interpretability, which has a limited role in adjuvant surgical treatment. To address these limitations, we propose the attention-based convolution transpositional interfusion network (ACTIN) for flexible and efficient drug discovery. ACTIN leverages the graph convolution and the transformer mechanism, utilizing drug and transcriptome data to assess the impact of chemical pharmacophores containing certain elements on gene expression. Remarkably, just with only 393 training instances, only one-tenth of the other models, ACTIN achieves state-of-the-art performance, demonstrating its effectiveness even with limited data. By incorporating chemical element embedding disparity and attention mechanism-based parameter analysis, it identifies the possible pharmacophore containing certain elements that could interfere with specific cell lines, which is particularly valuable for screening useful pharmacophores for new drugs tailored to adjuvant surgical treatment. To validate its reliability, we conducted comprehensive examinations by utilizing transcriptome data from the lung tissue of fatal COVID-19 patients as additional input for ACTIN, we generated novel lead chemicals that align with clinical evidence. In summary, ACTIN offers insights into the perturbation biases of elements within pharmacophore on gene expression, which holds the potential for guiding the development of new drugs that benefit surgical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
芒果完成签到 ,获得积分10
2秒前
terryok发布了新的文献求助10
6秒前
隐形曼青应助zxh采纳,获得10
9秒前
思源应助暴躁的芷巧采纳,获得10
15秒前
16秒前
23秒前
30秒前
火星上的听云完成签到,获得积分10
30秒前
liaoliao完成签到 ,获得积分10
34秒前
Alav0314完成签到,获得积分10
35秒前
竹伪发布了新的文献求助10
36秒前
乐正亦寒完成签到 ,获得积分10
41秒前
科研小赵发布了新的文献求助10
48秒前
yao发布了新的文献求助10
48秒前
49秒前
49秒前
55秒前
王硕小傻狗完成签到,获得积分10
55秒前
MinQi发布了新的文献求助10
55秒前
斯文败类应助brg1小王子采纳,获得20
57秒前
科研小赵完成签到,获得积分10
58秒前
MinQi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
郑倾城发布了新的文献求助30
1分钟前
星驰完成签到 ,获得积分10
1分钟前
黄涛涛发布了新的文献求助10
1分钟前
1分钟前
lvlvlv完成签到,获得积分10
1分钟前
brg1小王子发布了新的文献求助20
1分钟前
1分钟前
xl_c完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Leticia发布了新的文献求助10
1分钟前
brg1小王子完成签到,获得积分10
1分钟前
脑洞疼应助稳重中心采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076910
求助须知:如何正确求助?哪些是违规求助? 4296247
关于积分的说明 13386652
捐赠科研通 4118494
什么是DOI,文献DOI怎么找? 2255341
邀请新用户注册赠送积分活动 1259818
关于科研通互助平台的介绍 1192904