A Ship Detection Model with Progressive Feature Fusion and Cross-Spatial Learning Attention Mechanism for Optical Remote Sensing Images

机制(生物学) 计算机科学 特征(语言学) 融合 人工智能 遥感 计算机视觉 地质学 物理 哲学 语言学 量子力学
作者
Ru Miao,Jiaqian Wang,Ke Zhou,Meng Geng,Yongguang Li,Ranran Chang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad7d29
摘要

Abstract Using remote sensing images to detect ships is vital for port management, maritime transportation, and security. Challenges such as false detection and omission arise in ship target detection in optical remote sensing images due to the complexity of the background and the diversity of target scales. To address these issues, this paper proposes a novel model called MBE-YOLO. Firstly, the MS-SPPF structure is designed to effectively extract more feature information by efficiently integrating the features from different stages of the backbone network. Secondly, the BTN structure is designed with a progressive architecture to mitigate semantic differences between non-adjacent layers in the feature delivery process, thereby significantly reducing the risk of information loss. Finally, we introduce the EMA attention mechanism, which establishes short and long dependencies through multi-scale parallel subnetworks. This enhances the ability to detect targets in complex environments at various scales. MBE-YOLO is applied to the HRSC2016 and HiresShipDetection datasets. Comparison experiments with current mainstream and SOTA models demonstrate its effectiveness in addressing errors and omissions due to scene complexity and scale variations in remote sensing ship detection, with a parameter size of only 3.24M.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助wxd采纳,获得10
1秒前
jia完成签到 ,获得积分10
1秒前
康康发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
5秒前
喜欢年糕发布了新的文献求助10
6秒前
6秒前
bqf发布了新的文献求助10
6秒前
充电宝应助研友_nveVrL采纳,获得10
6秒前
顾矜应助infinite采纳,获得10
8秒前
3900发布了新的文献求助10
9秒前
iook发布了新的文献求助10
9秒前
喃喃发布了新的文献求助10
11秒前
11秒前
11秒前
奶油布丁完成签到 ,获得积分10
12秒前
唐诗阅完成签到,获得积分10
13秒前
bqf完成签到,获得积分10
14秒前
laber应助jia采纳,获得30
15秒前
16秒前
小呆毛发布了新的文献求助10
17秒前
17秒前
17秒前
SucceedIn完成签到,获得积分10
18秒前
科研通AI5应助仲夏采纳,获得10
19秒前
滕皓轩发布了新的文献求助10
22秒前
Vivian发布了新的文献求助10
22秒前
科研通AI5应助bobo采纳,获得10
22秒前
wfwl完成签到,获得积分10
22秒前
27秒前
细腻问柳完成签到 ,获得积分10
29秒前
JamesPei应助小栗采纳,获得10
30秒前
30秒前
科研通AI5应助夜话风陵杜采纳,获得10
30秒前
3900完成签到,获得积分10
32秒前
派大星发布了新的文献求助10
33秒前
RPG完成签到,获得积分10
34秒前
journey完成签到 ,获得积分10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802551
求助须知:如何正确求助?哪些是违规求助? 3348222
关于积分的说明 10337161
捐赠科研通 3064171
什么是DOI,文献DOI怎么找? 1682425
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010