FishDet-YOLO: Enhanced Underwater Fish Detection with Richer Gradient Flow and Long-Range Dependency Capture through Mamba-C2f

依赖关系(UML) 环境科学 航程(航空) 渔业 计算机科学 人工智能 生物 工程类 航空航天工程
作者
Yang Chen,Jian Xiang,Xiaoyong Li,Yunjie Xie
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:13 (18): 3780-3780 被引量:3
标识
DOI:10.3390/electronics13183780
摘要

The fish detection task is an essential component of marine exploration, which helps scientists monitor fish population numbers and diversity and understand changes in fish behavior and habitat. It also plays a significant role in assessing the health of marine ecosystems, formulating conservation measures, and maintaining biodiversity. However, there are two main issues with current fish detection algorithms. First, the lighting conditions underwater are significantly different from those on land. In addition, light scattering and absorption in water trigger uneven illumination, color distortion, and reduced contrast in images. The accuracy of detection algorithms can be affected by these lighting variations. Second, the wide variation of fish species in shape, color, and size brings about some challenges. As some fish have complex textures or camouflage features, it is difficult to differentiate them using current detection algorithms. To address these issues, we propose a fish detection algorithm—FishDet-YOLO—through improvement in the YOLOv8 algorithm. To tackle the complexities of underwater environments, we design an Underwater Enhancement Module network (UEM) that can be jointly trained with YOLO. The UEM enhances the details of underwater images via end-to-end training with YOLO. To address the diversity of fish species, we leverage the Mamba model’s capability for long-distance dependencies without increasing computational complexity and integrate it with the C2f from YOLOv8 to create the Mamba-C2f. Through this design, the adaptability in handling complex fish detection tasks is improved. In addition, the RUOD and DUO public datasets are used to train and evaluate FishDet-YOLO. FishDet-YOLO achieves mAP scores of 89.5% and 88.8% on the test sets of RUOD and DUO, respectively, marking an improvement of 8% and 8.2% over YOLOv8. It also surpasses recent state-of-the-art general object detection and underwater fish detection algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毓冰11111完成签到,获得积分10
1秒前
鸡蛋花干夹馍完成签到,获得积分20
2秒前
future完成签到 ,获得积分10
2秒前
3秒前
NN完成签到,获得积分10
4秒前
carly完成签到 ,获得积分10
6秒前
Misea发布了新的文献求助10
7秒前
HCKACECE完成签到 ,获得积分10
12秒前
隐形曼青应助moshi采纳,获得10
15秒前
俞若枫完成签到,获得积分10
15秒前
嘻嘻哈哈完成签到 ,获得积分10
15秒前
快乐的紫寒完成签到,获得积分10
18秒前
19秒前
21秒前
Rye227应助binbin采纳,获得10
22秒前
论文急急令完成签到,获得积分10
23秒前
王欣完成签到 ,获得积分10
23秒前
完美世界应助年轻的听露采纳,获得10
24秒前
24秒前
moshi发布了新的文献求助10
25秒前
专通下水道的小趴菜完成签到 ,获得积分10
25秒前
shen发布了新的文献求助10
25秒前
ZHH完成签到,获得积分10
25秒前
30秒前
34秒前
surivial发布了新的文献求助10
34秒前
年轻的听露完成签到,获得积分10
35秒前
35秒前
36秒前
36秒前
38秒前
40秒前
ZHH发布了新的文献求助10
40秒前
pluto应助平常的无极采纳,获得20
41秒前
Waki完成签到 ,获得积分10
43秒前
surivial完成签到,获得积分10
45秒前
落后的寻凝完成签到,获得积分10
46秒前
46秒前
传奇3应助maclogos采纳,获得10
48秒前
科研通AI5应助光亮的妖妖采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325186
关于积分的说明 10221815
捐赠科研通 3040328
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535