Artificial intelligence prediction of the mechanical properties of banana peel-ash and bagasse blended geopolymer concrete

地聚合物水泥 聚合物 蔗渣 材料科学 复合材料 制浆造纸工业 粉煤灰 工程类
作者
George Uwadiegwu Alaneme,Kolawole Adisa Olonade,Ebenezer Esenogho,Mustapha Muhammad Lawan,Edward Dintwa
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1): 26151-26151 被引量:31
标识
DOI:10.1038/s41598-024-77144-9
摘要

This research explores the application of Artificial Intelligence (AI) techniques to assess the mechanical properties of geopolymer concrete made from a blend of Banana Peel-Ash (BPA) and Sugarcane Bagasse Ash (SCBA), using a sodium silicate (Na2SiO3) to sodium hydroxide (NaOH) ratio ranging from 1.5 to 3. Utilizing three AI methodologies-Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP)-the study aims to enhance prediction accuracy for the mechanical properties of geopolymer concrete based on 104 datasets. By optimizing mix designs through varying proportions of BPA and SCBA, alkaline activator molarity, and aggregate-to-binder ratios, the research identified combinations that significantly enhance mechanical properties, demonstrating notable international relevance as it contributes to global efforts in sustainable construction by effectively utilizing industrial by-products. The experimental results demonstrated that increasing the molarity of the alkaline activator from 4 to 10 M significantly enhanced both the compressive and flexural strengths of the geopolymer concrete. Specifically, a mixture containing 52.5% SCBA and 47.5% BPA at a 10 M molarity achieved a maximum compressive strength of 33.17 MPa after 20 h of curing. In contrast, a mixture composed of 95% SCBA and 5% BPA at a 4 M molarity exhibited a substantially lower compressive strength of only 21.27 MPa. Additionally, the highest recorded flexural strength of 9.95 MPa (77.25% SCBA and 22.5 BPA) was observed at the 10 M molarity, while the flexural strength at 4 M was lowest, at 4.12 MPa (95% SCBA and 5% BPA). Microstructural analysis through Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (ED-SEM) revealed insights into the pore structure and elemental composition of the concrete, while Thermogravimetric Analysis (TGA) provided data on the material's thermal stability and decomposition characteristics. Performance analysis of the AI models showed that the ANN model had an average MSE of 1.338, RMSE of 1.157, MAE of 3.104, and R2 of 0.989, while the ANFIS model outperformed with an MSE of 0.345, RMSE of 0.587, MAE of 1.409, and R2 of 0.998. The GEP model demonstrated an MSE of 1.233, RMSE of 1.110, MAE of 1.828, and R2 of 0.992, confirming that ANFIS is the most accurate model for predicting the mechanical and rheological properties of geopolymer concrete. This study highlights the potential of integrating AI with experimental data to optimize the formulation and performance of geopolymer concrete, advancing sustainable construction practices by effectively utilizing industrial by-products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
皮皮朱发布了新的文献求助10
1秒前
2秒前
美女完成签到,获得积分10
3秒前
科研通AI6应助火山采纳,获得10
4秒前
林大佬发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
缓慢笑珊发布了新的文献求助30
7秒前
yu完成签到 ,获得积分10
8秒前
8秒前
xiao发布了新的文献求助10
8秒前
暴躁的沧海完成签到 ,获得积分10
9秒前
orixero应助可爱绮采纳,获得30
9秒前
慕青应助祁灵枫采纳,获得10
10秒前
小马甲应助杨桃采纳,获得10
10秒前
11秒前
neinei发布了新的文献求助10
11秒前
洋芋年糕完成签到,获得积分10
11秒前
虚心完成签到 ,获得积分10
12秒前
Pzs发布了新的文献求助10
13秒前
13秒前
14秒前
Demo发布了新的文献求助10
14秒前
我是老大应助皮皮朱采纳,获得10
14秒前
敏感的山兰完成签到,获得积分20
15秒前
芳芳完成签到,获得积分20
15秒前
lyn完成签到,获得积分10
16秒前
彭于晏应助hxq1015采纳,获得10
16秒前
沉沉浮发布了新的文献求助10
17秒前
17秒前
18秒前
fang发布了新的文献求助10
20秒前
科研通AI2S应助漫漫采纳,获得10
20秒前
21秒前
田様应助洋芋年糕采纳,获得10
22秒前
23秒前
芳芳发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554346
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654484
捐赠科研通 4580637
什么是DOI,文献DOI怎么找? 2512417
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076