Reinforcement Learning-Based Nonautoregressive Solver for Traveling Salesman Problems

旅行商问题 解算器 强化学习 计算机科学 钢筋 问题解决者 数学优化 人工智能 数学 心理学 算法 计算科学 社会心理学
作者
Yubin Xiao,Di Wang,Boyang Li,Huanhuan Chen,Wei Pang,Xuan Wu,Hao Li,Dong Xu,Yanchun Liang,You Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tnnls.2024.3483231
摘要

The traveling salesman problem (TSP) is a well-known combinatorial optimization problem (COP) with broad real-world applications. Recently, neural networks (NNs) have gained popularity in this research area because as shown in the literature, they provide strong heuristic solutions to TSPs. Compared to autoregressive neural approaches, nonautoregressive (NAR) networks exploit the inference parallelism to elevate inference speed but suffer from comparatively low solution quality. In this article, we propose a novel NAR model named NAR4TSP, which incorporates a specially designed architecture and an enhanced reinforcement learning (RL) strategy. To the best of our knowledge, NAR4TSP is the first TSP solver that successfully combines RL and NAR networks. The key lies in the incorporation of NAR network output decoding into the training process. NAR4TSP efficiently represents TSP-encoded information as rewards and seamlessly integrates it into RL strategies, while maintaining consistent TSP sequence constraints during both training and testing phases. Experimental results on both synthetic and real-world TSPs demonstrate that NAR4TSP outperforms five state-of-the-art (SOTA) models in terms of solution quality, inference speed, and generalization to unseen scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张发布了新的文献求助10
1秒前
1秒前
qingde发布了新的文献求助10
1秒前
研友_LNVeyL完成签到,获得积分10
2秒前
2秒前
曾经凡之发布了新的文献求助20
3秒前
杨洋发布了新的文献求助10
4秒前
蛋蛋完成签到,获得积分10
5秒前
无花果应助momi采纳,获得30
6秒前
慈祥的鸣凤完成签到 ,获得积分10
8秒前
8秒前
叶知秋发布了新的文献求助20
8秒前
10秒前
10秒前
11秒前
科研通AI2S应助噜噜采纳,获得10
11秒前
11秒前
xiaozhu完成签到,获得积分10
12秒前
wanci应助laissez_fairy采纳,获得10
12秒前
13秒前
科研通AI5应助Jankin采纳,获得10
13秒前
菠萝完成签到,获得积分10
14秒前
学术zha发布了新的文献求助30
14秒前
欢呼橘子完成签到 ,获得积分10
14秒前
小胖砸完成签到 ,获得积分10
14秒前
14秒前
16秒前
钟小凯完成签到 ,获得积分10
17秒前
17秒前
18秒前
jackhlj完成签到,获得积分10
18秒前
zwq发布了新的文献求助20
18秒前
称心鸵鸟发布了新的文献求助10
18秒前
思源应助Qovn采纳,获得10
18秒前
噜噜完成签到,获得积分10
20秒前
小高发布了新的文献求助10
20秒前
臧梓任完成签到,获得积分10
21秒前
吴未发布了新的文献求助10
21秒前
21秒前
噜噜发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791817
求助须知:如何正确求助?哪些是违规求助? 3336131
关于积分的说明 10279169
捐赠科研通 3052806
什么是DOI,文献DOI怎么找? 1675333
邀请新用户注册赠送积分活动 803378
科研通“疑难数据库(出版商)”最低求助积分说明 761208