Spatio-Temporal Pruning for Training Ultra-Low-Latency Spiking Neural Networks in Remote Sensing Scene Classification

计算机科学 培训(气象学) 人工智能 人工神经网络 修剪 遥感 模式识别(心理学) 地理 气象学 农学 生物
作者
Jiahao Li,Ming Xu,He Chen,Wenchao Liu,Liang Chen,Yizhuang Xie
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (17): 3200-3200
标识
DOI:10.3390/rs16173200
摘要

In remote sensing scene classification (RSSC), restrictions on real-time processing on power consumption, performance, and resources necessitate the compression of neural networks. Unlike artificial neural networks (ANNs), spiking neural networks (SNNs) convey information through spikes, offering superior energy efficiency and biological plausibility. However, the high latency of SNNs restricts their practical application in RSSC. Therefore, there is an urgent need to research ultra-low-latency SNNs. As latency decreases, the performance of the SNN significantly deteriorates. To address this challenge, we propose a novel spatio-temporal pruning method that enhances the feature capture capability of ultra-low-latency SNNs. Our approach integrates spatial fundamental structures during the training process, which are subsequently pruned. We conduct a comprehensive evaluation of the impacts of these structures across classic network architectures, such as VGG and ResNet, demonstrating the generalizability of our method. Furthermore, we develop an ultra-low-latency training framework for SNNs to validate the effectiveness of our approach. In this paper, we successfully achieve high-performance ultra-low-latency SNNs with a single time step for the first time in RSSC. Remarkably, our SNN with one time step achieves at least 200 times faster inference time while maintaining a performance comparable to those of other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jeremy关注了科研通微信公众号
4秒前
哟哟哟发布了新的文献求助10
5秒前
8秒前
小猪完成签到,获得积分10
8秒前
干净幻梅完成签到,获得积分10
10秒前
科研小垃圾完成签到,获得积分10
13秒前
小麻薯发布了新的文献求助10
15秒前
折镜完成签到,获得积分10
15秒前
眼睛大安珊完成签到,获得积分10
18秒前
顾矜应助科研通管家采纳,获得10
18秒前
乐乐应助科研通管家采纳,获得30
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
19秒前
WHITE完成签到,获得积分10
21秒前
24秒前
深情安青应助haochi采纳,获得10
25秒前
xk完成签到,获得积分20
32秒前
lili完成签到,获得积分10
37秒前
无聊完成签到,获得积分10
38秒前
44秒前
张伟完成签到,获得积分10
47秒前
呆萌不正发布了新的文献求助10
50秒前
cdercder应助哈哈采纳,获得10
51秒前
风中书易完成签到,获得积分10
52秒前
所所应助Jro采纳,获得10
52秒前
53秒前
hoangphong完成签到,获得积分10
53秒前
内向的小凡完成签到,获得积分0
53秒前
Owen应助cloudss采纳,获得10
55秒前
哟哟哟发布了新的文献求助10
55秒前
上官若男应助小瓶子0327采纳,获得10
56秒前
zhangruiii完成签到,获得积分10
57秒前
发发发布了新的文献求助10
57秒前
顾矜应助菠菜采纳,获得150
1分钟前
欣喜沛芹完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831508
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481136
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819215
科研通“疑难数据库(出版商)”最低求助积分说明 771307