Prediction of Biochar Adsorption of Uranium in Wastewater and Inversion of Key Influencing Parameters Based on Ensemble Learning

阿达布思 生物炭 特征选择 Boosting(机器学习) 计算机科学 集成学习 人工智能 环境科学 工程类 支持向量机 废物管理 热解
作者
Zening Qu,Wei Wang,Yan He
出处
期刊:Toxics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 698-698 被引量:1
标识
DOI:10.3390/toxics12100698
摘要

With the rapid development of industrialization, the problem of heavy metal wastewater treatment has become increasingly serious, posing a serious threat to the environment and human health. Biochar shows great potential for application in the field of wastewater treatment; however, biochars prepared from different biomass sources and experimental conditions have different physicochemical properties, resulting in differences in their adsorption capacity for uranium, which limits their wide application in wastewater treatment. Therefore, there is an urgent need to deeply explore and optimize the key parameter settings of biochar to significantly improve its adsorption capacity. This paper combines the nonlinear mapping capability of SCN and the ensemble learning advantage of the Adaboost algorithm based on existing experimental data on wastewater treatment. The accuracy of the model is evaluated by metrics such as coefficient of determination (R2) and error rate. It was found that the Adaboost–SCN model showed significant advantages in terms of prediction accuracy, precision, model stability and generalization ability compared to the SCN model alone. In order to further improve the performance of the model, this paper combined Adaboost–SCN with maximum information coefficient (MIC), random forest (RF) and energy valley optimizer (EVO) feature selection methods to construct three models, namely, MIC-Adaboost–SCN, RF-Adaboost–SCN and EVO-Adaboost–SCN. The results show that the prediction model with added feature selection is significantly better than the Adaboost–SCN model without feature selection in each evaluation index, and EVO has the most significant effect on feature selection. Finally, the correlation between biochar adsorption properties and production parameters was discussed through the inversion study of key parameters, and optimal parameter intervals were proposed to improve the adsorption properties. Providing strong support for the wide application of biochar in the field of wastewater treatment helps to solve the urgent environmental problem of heavy metal wastewater treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助清脆的雁易采纳,获得10
2秒前
zq完成签到 ,获得积分10
5秒前
7秒前
大模型应助自信谷冬采纳,获得10
8秒前
10秒前
dennisysz发布了新的文献求助10
13秒前
13秒前
15秒前
小雪发布了新的文献求助10
16秒前
18秒前
打打应助香锅不要辣采纳,获得10
18秒前
18秒前
bkagyin应助下雨这天采纳,获得10
20秒前
朱比特完成签到,获得积分10
21秒前
QAQ发布了新的文献求助10
22秒前
23秒前
一般学生发布了新的文献求助10
25秒前
25秒前
25秒前
鼻揩了转去应助liuyi818采纳,获得10
26秒前
wtl发布了新的文献求助10
27秒前
1337完成签到,获得积分10
28秒前
29秒前
29秒前
小喵发布了新的文献求助10
30秒前
马里奥发布了新的文献求助10
30秒前
33秒前
研友_nqv5WZ发布了新的文献求助10
34秒前
Cheshire完成签到,获得积分10
34秒前
李浩发布了新的文献求助10
35秒前
Peng丶Young完成签到,获得积分10
36秒前
吕文晴完成签到 ,获得积分10
38秒前
一般学生完成签到,获得积分10
40秒前
淡淡的雪完成签到,获得积分10
41秒前
43秒前
wanci应助学术小白采纳,获得10
44秒前
王海海完成签到,获得积分10
47秒前
48秒前
打打应助维成采纳,获得10
48秒前
Meteor636完成签到 ,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777367
求助须知:如何正确求助?哪些是违规求助? 3322743
关于积分的说明 10211437
捐赠科研通 3038087
什么是DOI,文献DOI怎么找? 1667060
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758103