A Graph–Transformer Method for Landslide Susceptibility Mapping

计算机科学 图形 变压器 数据挖掘 相关性 山崩 理论计算机科学 数学 电压 地质学 工程类 几何学 电气工程 岩土工程
作者
Zhang Qing,Yi He,Yalei Zhang,Jiangang Lu,Lifeng Zhang,Tianbao Huo,Jiapeng Tang,Yumin Fang,Yunhao Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 14556-14574 被引量:6
标识
DOI:10.1109/jstars.2024.3437751
摘要

Landslide susceptibility mapping (LSM) is of great significance for regional land resource planning and disaster prevention and reduction. The machine learning (ML) method has been widely used in the field of LSM. However, the existing LSM model fails to consider the correlation between landslide and disaster-prone environment (DPE) and lacks global information, resulting in a high false alarm rate of LSM. Therefore, we propose an LSM method with GraphTransformer that considers the DPE characteristics and global information. Firstly, correlation analysis and importance analysis are employed on nine landslide contributing factors (LCFs), and the landslide dataset is generated by combining remote sensing image interpretation and field verification. Secondly, a graph constrained by environment similarity relationship is constructed to realize the correlation between landslide and DPE. Then, the Transformer module is introduced to construct a Graph-Transformer model that considers the global information. Finally, the LSM is generated and analyzed, and the accuracy of the proposed model is compared and evaluated. The experimental results show that the environment similarity relationship graph effectively improves the accuracy of the models and weakens the influence of environmental differences on the models. Compared with graph convolutional network (GCN), graph sample and aggregate (GraphSAGE), and graph attention network (GAT) models, the AUC value of the proposed model is more than 2.05% higher under the environment similarity relationship. In addition, the AUC value of the proposed model is more than 8.8% higher than that of traditional ML models. In conclusion, our proposed model framework can get better evaluation results than most existing methods, and its results can provide effective ways and key technical support for landslide disaster investigation and control
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
凉夏完成签到,获得积分20
1秒前
1秒前
慕青应助Arlie采纳,获得10
1秒前
www发布了新的文献求助10
2秒前
Aipoi发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
威武的天德完成签到,获得积分10
4秒前
Lymtics发布了新的文献求助10
4秒前
4秒前
CipherSage应助年轻小笼包采纳,获得10
5秒前
5秒前
5秒前
5秒前
weizhao发布了新的文献求助10
5秒前
安宁完成签到 ,获得积分20
6秒前
柳絮吹雪发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
搜集达人应助耳冉采纳,获得10
7秒前
8秒前
酷波er应助名卡卡采纳,获得10
8秒前
科研通AI6应助tr采纳,获得10
9秒前
南殊爱吃鱼粮完成签到,获得积分10
9秒前
9秒前
李健应助REX采纳,获得10
10秒前
janice发布了新的文献求助10
10秒前
10秒前
复杂不尤发布了新的文献求助10
10秒前
小白完成签到,获得积分10
10秒前
ishi卡哇伊发布了新的文献求助10
10秒前
11秒前
善学以致用应助木木三采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262149
求助须知:如何正确求助?哪些是违规求助? 4423231
关于积分的说明 13769006
捐赠科研通 4297780
什么是DOI,文献DOI怎么找? 2358130
邀请新用户注册赠送积分活动 1354509
关于科研通互助平台的介绍 1315669