Efficient malware detection using hybrid approach of transfer learning and generative adversarial examples with image representation

计算机科学 人工智能 恶意软件 机器学习 规范化(社会学) 生成语法 卷积神经网络 特征学习 学习迁移 深度学习 模式识别(心理学) 计算机安全 社会学 人类学
作者
Yue Zhao,Farhan Ullah,Chien‐Ming Chen,Mohammed Amoon,Saru Kumari
出处
期刊:Expert Systems [Wiley]
卷期号:42 (2) 被引量:6
标识
DOI:10.1111/exsy.13693
摘要

Abstract Identifying malicious intent within a program, also known as malware, is a critical security task. Many detection systems remain ineffective due to the persistent emergence of zero‐day variants, despite the pervasive use of antivirus tools for malware detection. The application of generative AI in the realm of malware visualization, particularly when binaries are depicted as colour visuals, represents a significant advancement over traditional machine‐learning approaches. Generative AI generates various samples, minimizing the need for specialized knowledge and time‐consuming analysis, hence boosting zero‐day attack detection and mitigation. This paper introduces the Deep Convolutional Generative Adversarial Network for Zero‐Shot Learning (DCGAN‐ZSL), leveraging transfer learning and generative adversarial examples for efficient malware classification. First, a normalization method is proposed, resizing malicious images to 128 × 128 or 300 × 300 for standardized input, enhancing feature transformation for improved malware pattern recognition. Second, greyscale representations are converted into colour images to augment feature extraction, providing a richer input for enhanced model performance in malware classification. Third, a novel DCGAN with progressive training improves model stability, mode collapse, and image quality, thus advancing generative model training. We apply the Attention ResNet‐based transfer learning method to extract texture features from generated samples, which increases security evaluation performance. Finally, the ZSL for zero‐day malware presents a novel method for identifying previously unknown threats, indicating a significant advancement in cybersecurity. The proposed approach is evaluated using two standard datasets, namely dumpware and malimg, achieving malware classification accuracies of 96.21% and 98.91%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助邹嘉锋采纳,获得10
刚刚
Leon Lai发布了新的文献求助10
2秒前
2秒前
英姑应助xinxin采纳,获得10
2秒前
suchen发布了新的文献求助10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
魔芋小心完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
直率的抽屉完成签到,获得积分10
4秒前
5秒前
愿好完成签到,获得积分10
5秒前
Yongjie发布了新的文献求助10
6秒前
顽铁完成签到,获得积分10
6秒前
6秒前
Miuca发布了新的文献求助150
8秒前
love454106发布了新的文献求助10
8秒前
111完成签到,获得积分10
9秒前
齐奥完成签到 ,获得积分10
9秒前
9秒前
nnetth完成签到,获得积分10
9秒前
10秒前
卡萨丁那看啥完成签到,获得积分10
10秒前
10秒前
10秒前
万1完成签到,获得积分10
10秒前
Big胆完成签到,获得积分10
11秒前
11秒前
Yongjie完成签到,获得积分10
13秒前
万1发布了新的文献求助10
13秒前
14秒前
李健应助丢丢银采纳,获得10
15秒前
Voyage发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002