Efficient Cross-Domain Fault Diagnosis via Distributed Multi-Source Domain Deep Transfer Learning

学习迁移 领域(数学分析) 计算机科学 深度学习 断层(地质) 传输(计算) 人工智能 分布式计算 地质学 地震学 数学 并行计算 数学分析
作者
Lanjun Wan,Jiaen Ning,Yuanyuan Li,Changyun Li
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 016165-016165 被引量:1
标识
DOI:10.1088/1361-6501/ad90fa
摘要

Abstract In actual industrial production, the working conditions of rotating machinery are complex and changeable, and the health-state monitoring data are increasingly large and difficult to label, which will seriously restrict the accuracy and efficiency of the cross-domain fault diagnosis (CDFD) of rotating machinery. Therefore, an efficient multi-source domain deep transfer learning (MDDTL) method for CDFD of rotating machinery is proposed. First, an MDDTL model is constructed to improve the accuracy of CDFD. In the model, a dual-phase domain alignment strategy is designed, which considers the alignment of feature distributions between each source and target domain pair in the feature space and that of the prediction probabilities between domain-specific fault classifiers in the output space. The fault prediction results from multiple different fault classifiers are merged dynamically by the proposed imbalanced adaptive prediction strategy. Secondly, a data-parallel distributed training scheme for the MDDTL model is proposed. Based on the idea of data parallelism, the distributed parallel training of the MDDTL model is performed with a Horovod-graphics processing unit platform, and the parameters are synchronously updated with the bandwidth-optimal Ring-AllReduce architecture. Under the premise of ensuring the accuracy of FD, the training time of the MDDTL model is significantly reduced. Finally, extensive experiments are conducted to verify the effectiveness of the proposed MDDTL method. The results demonstrate that the proposed method not only effectively improves the accuracy of CDFD of rotating machinery but also significantly improves the training efficiency of the MDDTL model. After adopting the proposed method, the diagnosis accuracies achieved under two different cross-working condition scenarios reach 97.09% and 97.87% respectively, and the model training time is reduced by 73.62% when facing a large-scale rotating machinery training set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vnihc发布了新的文献求助10
1秒前
温暖的铅笔完成签到,获得积分10
1秒前
the兰完成签到,获得积分10
1秒前
香蕉觅云应助心心采纳,获得10
2秒前
3秒前
清爽老九发布了新的文献求助20
3秒前
4秒前
自然白风完成签到,获得积分10
4秒前
小黄鸭发布了新的文献求助10
5秒前
动人的书雪完成签到,获得积分10
5秒前
the兰发布了新的文献求助10
5秒前
zzm完成签到,获得积分10
7秒前
积极向上完成签到,获得积分20
7秒前
七濑发布了新的文献求助10
8秒前
11秒前
mouse完成签到,获得积分10
12秒前
三三四完成签到,获得积分20
12秒前
自信号厂发布了新的文献求助10
13秒前
14秒前
华仔应助hoojack采纳,获得10
14秒前
15秒前
积极向上发布了新的文献求助10
15秒前
CodeCraft应助小黄鸭采纳,获得10
15秒前
Owen应助gg采纳,获得50
17秒前
Yiy完成签到 ,获得积分0
17秒前
18秒前
戴衡霞完成签到,获得积分10
18秒前
科研通AI5应助聂难敌采纳,获得10
18秒前
大个应助master采纳,获得20
20秒前
orixero应助猛龙总冠军采纳,获得10
21秒前
22秒前
难摧发布了新的文献求助20
22秒前
深情安青应助hoojack采纳,获得10
22秒前
23秒前
25秒前
25秒前
科目三应助liumengyuan采纳,获得10
27秒前
27秒前
chocolate完成签到 ,获得积分10
28秒前
封从霜完成签到,获得积分10
29秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
Pleistocene Mammals of North America 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832793
求助须知:如何正确求助?哪些是违规求助? 3375262
关于积分的说明 10488176
捐赠科研通 3094858
什么是DOI,文献DOI怎么找? 1704025
邀请新用户注册赠送积分活动 819723
科研通“疑难数据库(出版商)”最低求助积分说明 771623