Predicting distant metastasis of bladder cancer using multiple machine learning models: a study based on the SEER database with external validation

Lasso(编程语言) 接收机工作特性 膀胱癌 队列 线性判别分析 逻辑回归 医学 癌症 支持向量机 计算机科学 转移 监测、流行病学和最终结果 肿瘤科 人工智能 机器学习 内科学 癌症登记处 万维网
作者
Xin Chang Zou,Xu-Guang Rao,Jian Huang,Jie Zhou,Hai Chao Chao,Tao Zeng
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1477166
摘要

Background and purpose Distant metastasis in bladder cancer is linked to poor prognosis and significant mortality. Machine learning (ML), a key area of artificial intelligence, has shown promise in the diagnosis, staging, and treatment of bladder cancer. This study aimed to employ various ML techniques to predict distant metastasis in patients with bladder cancer. Patients and methods Patients diagnosed with bladder cancer in the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2021 were included in this study. After a rigorous screening process, a total of 4,108 patients were selected for further analysis, divided in a 7:3 ratio into a training cohort and an internal validation cohort. In addition, 118 patients treated at the Second Affiliated Hospital of Nanchang University were included as an external validation cohort. Features were filtered using the least absolute shrinkage and selection operator (LASSO) regression algorithm. Based on the significant features identified, three ML algorithms were utilized to develop prediction models: logistic regression, support vector machine (SVM), and linear discriminant analysis (LDA). The predictive performance of the three models was evaluated by obtaining the area under the receiver operating characteristic (ROC) curve (AUC), the precision, the accuracy, and the F1 score. Results According to the statistical results, the final probability of distant metastasis in the population was 12.0% ( n = 495). LASSO regression analysis revealed that age, chemotherapy, tumor size, the examination of non-regional lymph nodes, and regional lymph node evaluation were significantly associated with distant metastasis of bladder cancer. In the internal validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.874, 0.877, and 0.845, respectively. The precision rates were 0.805, 0.769, and 0.827, respectively, and the F1 scores were 0.821, 0.819, and 0.835, respectively. The ROC curve demonstrated that the AUC for all models was greater than 0.7. In the external validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.856, 0.848, and 0.797, respectively, with the ROC curve indicating that the AUC also exceeded 0.7. The precision rates were 0.877, 0.718, and 0.736, respectively, and the F1 scores were 0.797, 0.778, and 0.762, respectively. Among the algorithms used, logistic regression demonstrated better predictive efficiency than the other two methods. The top three variables with the highest importance scores in the logistic regression were non-regional lymph nodes, age, and chemotherapy. Conclusion The prediction model developed using three ML algorithms demonstrated strong accuracy and discriminative capability in predicting distant metastasis in patients with bladder cancer. This might help clinicians in understanding patient prognosis and in formulating personalized treatment strategies, ultimately improving the overall prognosis of patients with bladder cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
技术的不能发表完成签到 ,获得积分10
刚刚
桃子完成签到,获得积分10
刚刚
孤独的远山完成签到,获得积分10
刚刚
沉静野狼完成签到,获得积分10
刚刚
慕容绝义完成签到,获得积分10
刚刚
哈哈发布了新的文献求助10
刚刚
加油冲完成签到,获得积分10
1秒前
xue完成签到,获得积分10
1秒前
Silence完成签到,获得积分0
1秒前
胡安完成签到,获得积分10
1秒前
KAZEN完成签到,获得积分10
2秒前
一只东北鸟完成签到 ,获得积分10
2秒前
2秒前
曹翔豪完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
JamesPei应助丹枫飘锦采纳,获得30
3秒前
犹豫灵凡完成签到,获得积分10
3秒前
张瀚元完成签到,获得积分20
3秒前
3秒前
4秒前
东东呀完成签到,获得积分10
4秒前
JSEILWQ完成签到 ,获得积分10
5秒前
张鹏飞完成签到,获得积分10
5秒前
小树完成签到,获得积分10
5秒前
拉布拉卡完成签到,获得积分20
6秒前
张瀚元发布了新的文献求助10
6秒前
欢呼香芋完成签到,获得积分10
7秒前
伶俐芷珊完成签到,获得积分10
7秒前
优美元枫完成签到,获得积分10
7秒前
Ouou完成签到 ,获得积分10
7秒前
hustscholar完成签到,获得积分10
7秒前
112233发布了新的文献求助50
8秒前
甜甜元槐发布了新的文献求助10
9秒前
拉布拉卡发布了新的文献求助10
9秒前
孙梁子完成签到,获得积分10
9秒前
夏侯初完成签到,获得积分10
9秒前
略略略完成签到,获得积分10
10秒前
冷艳的煎饼完成签到,获得积分10
10秒前
mao完成签到 ,获得积分10
11秒前
wsd完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Estimation of the Maximum Design Effective Temperature for Steel Box Girder Bridges Considering Asphalt Thickness of Concrete Deck 800
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079918
求助须知:如何正确求助?哪些是违规求助? 4298008
关于积分的说明 13389509
捐赠科研通 4121393
什么是DOI,文献DOI怎么找? 2257128
邀请新用户注册赠送积分活动 1261397
关于科研通互助平台的介绍 1195520