Computational Fluid Dynamics (CFD) Modeling of Material Transport through Triply Periodic Minimal Surface (TPMS) Scaffolds for Bone Tissue Engineering

计算流体力学 脚手架 组织工程 生物医学工程 剪应力 流体力学 湍流 材料科学 再生(生物学) 工作(物理) 机械工程 机械 纳米技术 工程类 复合材料 物理 细胞生物学 生物
作者
Brandon Coburn,Roozbeh Salary
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:: 1-32
标识
DOI:10.1115/1.4067575
摘要

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration. The objective of the work is to establish computational fluid dynamics (CFD) models to identify the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds designed based on the principles of triply periodic minimal surfaces (TPMS). In this study, advanced CFD models were established based on ten TPMS designs for analyzing (i) single-unit internal flow, (ii) single-unit external flow, and (iii) cubic, full-scaffold external flow. The main fluid characteristics influential in bone regeneration, including flow velocity, pressure, and wall shear stress (WSS), were analyzed to assess material transport internally through and externally over the TPMS designs. Schwarz Primitive (P) appeared to have the lowest level of flow pressure and WSS (desirable for development of bone tissues). An analysis of streamline velocity exhibited an increase in velocity togther with a depiction of turbulent motion along the curved surfaces of the TPMS designs. Besides, pressure buildup was observed within the inner channels of almost all the TPMS designs. Overall, the outcomes of this study pave the way for optimal design and fabrication of bone-like tissues with desirable medical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZC完成签到,获得积分10
1秒前
糖糖完成签到,获得积分10
2秒前
capx完成签到,获得积分10
2秒前
呱呱完成签到 ,获得积分10
2秒前
2秒前
3秒前
我是老大应助流年采纳,获得10
3秒前
4秒前
4秒前
平淡雪枫完成签到 ,获得积分10
5秒前
彭于晏应助fan采纳,获得10
5秒前
科研通AI5应助端庄秋柳采纳,获得10
6秒前
6秒前
6秒前
6秒前
mr完成签到 ,获得积分10
7秒前
黄金矿工发布了新的文献求助10
8秒前
elaine完成签到,获得积分10
8秒前
neiz发布了新的文献求助10
8秒前
zwj003完成签到,获得积分10
9秒前
奋斗靖仇完成签到 ,获得积分10
9秒前
9秒前
不是一个名字完成签到,获得积分10
10秒前
英姑应助hexinyu采纳,获得10
10秒前
ddli发布了新的文献求助10
10秒前
11秒前
闪闪的鹏博完成签到,获得积分10
12秒前
黄秋秋发布了新的文献求助10
13秒前
四糸乃完成签到,获得积分10
13秒前
jiayou发布了新的文献求助10
15秒前
雅典的宠儿完成签到 ,获得积分10
16秒前
大饼哥完成签到,获得积分10
16秒前
竹筏过海完成签到,获得积分0
17秒前
jenningseastera应助四糸乃采纳,获得10
17秒前
流年完成签到,获得积分10
17秒前
希望天下0贩的0应助云宝采纳,获得10
17秒前
master完成签到,获得积分10
18秒前
juzi完成签到 ,获得积分10
20秒前
金顺完成签到,获得积分10
20秒前
Otorhino完成签到 ,获得积分10
21秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790