清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Road preview method for active suspension based on reinforcement learning

悬挂(拓扑) 钢筋 主动悬架 强化学习 计算机科学 主动学习(机器学习) 材料科学 人工智能 复合材料 数学 同伦 纯数学 执行机构
作者
Guohong Wang,Farong Kou,Pengtao Liu,Weihua Lv,Laijun Xing
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/adad09
摘要

Abstract The pre-identification of impulse road surfaces, such as speed bumps, potholes, and manhole covers, can significantly enhance the performance of active suspension systems. However, existing current identification methods often fail to balance between low cost, high reliability, and precise speed. This study proposes an impulse road surface identification method based on a reinforcement learning network. First, a real dataset of impulse road surfaces was collected, with suspension dynamic responses serving as inputs and random road levels along with impulse road surface features as outputs. This data was used to develop a Random Forest Extreme Gradient Boosting (RF-XGBoost) network to recognize road surface information from vehicle dynamics. Next, a semantic segmentation network was employed to segment road surfaces during intelligent vehicle travel, using road surface information identified by the random forest network as the reward function for reinforcement learning. The reinforcement learning policy was pre-trained using the actual collected data. To validate the effectiveness of the proposed control strategy, a simulation environment was constructed in Prescan, where speed bumps, potholes, and manhole covers of varying heights and sizes were randomly arranged. The reinforcement learning-based road surface identification algorithm was implemented in Simulink, and a co-simulation was conducted with the CarSim vehicle model. The enhanced RF-XGBoost network effectively distinguishes between random and impulse road surfaces, achieving average recognition accuracies of 95.7% for random surfaces and 98.2% for impulse surfaces. During initial training iterations, the RL network exhibited lower accuracy; however, as training progressed, the accuracy for unfamiliar road surface features reached an average of 96.5%, and overall recognition accuracy improved by an average of 9%. The simulation results demonstrate that the proposed reinforcement learning identification method effectively acquires information about the road ahead, shows robustness and generalization, and provides crucial disturbance data for subsequent active suspension control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily完成签到 ,获得积分10
14秒前
15秒前
笨笨亦凝发布了新的文献求助10
20秒前
wf完成签到,获得积分10
23秒前
酷波er应助笨笨亦凝采纳,获得10
27秒前
48秒前
方白秋完成签到,获得积分10
52秒前
机灵雨发布了新的文献求助30
53秒前
1分钟前
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
2分钟前
juan完成签到 ,获得积分10
2分钟前
崔哥发布了新的文献求助10
3分钟前
慧姐完成签到,获得积分10
3分钟前
领导范儿应助慧姐采纳,获得10
3分钟前
back you up完成签到,获得积分0
3分钟前
王磊完成签到 ,获得积分10
4分钟前
崔哥完成签到,获得积分10
4分钟前
月儿完成签到 ,获得积分10
4分钟前
4分钟前
慧姐发布了新的文献求助10
4分钟前
开心完成签到 ,获得积分10
4分钟前
柯伊达完成签到 ,获得积分10
5分钟前
天天快乐应助dcm采纳,获得10
5分钟前
5分钟前
CipherSage应助WangY1263采纳,获得30
5分钟前
dcm发布了新的文献求助10
5分钟前
丁丁完成签到,获得积分10
5分钟前
慕青应助科研通管家采纳,获得10
5分钟前
6分钟前
WangY1263发布了新的文献求助30
6分钟前
归海浩阑完成签到,获得积分10
6分钟前
充电宝应助dcm采纳,获得10
6分钟前
6分钟前
大树完成签到 ,获得积分10
6分钟前
lanbing802发布了新的文献求助10
6分钟前
星辰大海应助lanbing802采纳,获得10
7分钟前
gwbk完成签到,获得积分10
7分钟前
迷茫的一代完成签到,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782698
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234410
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994