亲缘关系
排名(信息检索)
药物发现
水准点(测量)
化学空间
计算机科学
生物信息学
计算生物学
支架
采样(信号处理)
秩(图论)
相似性(几何)
结合亲和力
化学
数据挖掘
组合化学
立体化学
机器学习
生物
数学
生物信息学
人工智能
工程类
生物化学
地理
受体
组合数学
机械工程
大地测量学
计算机视觉
基因
滤波器(信号处理)
图像(数学)
作者
Sridip Parui,J.C. Robertson,Sandeep Somani,Gary Tresadern,Cong Liu,Ken A. Dill
标识
DOI:10.1021/acs.jcim.3c00243
摘要
Affinity ranking of structurally diverse small-molecule ligands is a challenging problem with important applications in structure-based drug discovery. Absolute binding free energy methods can model diverse ligands, but the high computational cost of the current methods limits application to data sets with few ligands. We recently developed MELD-Bracket, a Molecular Dynamics method for efficient affinity ranking of ligands [ JCTC 2022, 18 (1), 374-379]. It utilizes a Bayesian framework to guide sampling to relevant regions of phase space, and it couples this with a bracket-like competition on a pool of ligands. Here we find that 6-competitor MELD-Bracket can rank dozens of diverse ligands that have low structural similarity and different net charges. We benchmark it on four protein systems─PTB1B, Tyk2, BACE, and JAK3─having varied modes of interactions. We also validated 8-competitor and 12-competitor protocols. The MELD-Bracket protocols presented here may have the appropriate balance of accuracy and computational efficiency to be suitable for ranking diverse ligands from typical drug discovery campaigns.
科研通智能强力驱动
Strongly Powered by AbleSci AI