摘要
HomeRadiologyVol. 307, No. 4 PreviousNext Reviews and CommentaryEditorialAutomation Bias in Breast AIPascal A. T. Baltzer Pascal A. T. Baltzer Author AffiliationsFrom the Department of Biomedical Imaging and Image-guided Therapy, Allgemeines Krankenhaus, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.Address correspondence to the author (email: [email protected]).Pascal A. T. Baltzer Published Online:May 2 2023https://doi.org/10.1148/radiol.230770MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Hickman SE, Woitek R, Le EPV, et al. Machine Learning for Workflow Applications in Screening Mammography: Systematic Review and Meta-Analysis. Radiology 2022;302(1):88–104. Link, Google Scholar2. Cummings M. Automation Bias in Intelligent Time Critical Decision Support Systems. AIAA 1st Intelligent Systems Technical Conference. American Institute of Aeronautics and Astronautics; 2004. Crossref, Google Scholar3. Dratsch T, Chen X, Rezazade Mehrizi M, et al. Automation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader Performance. Radiology 2023;307(4):e222176. Link, Google Scholar4. Bahner J, Hüper A-D, Manzey D. Misuse of automated decision aids: Complacency, automation bias and the impact of training experience. Int J Hum Comput Stud 2008;66(9):688–699. Crossref, Google Scholar5. Skitka LJ, Mosier K, Burdick MD. Accountability and automation bias. Int J Hum Comput Stud 2000;52(4):701–717. Crossref, Google Scholar6. Schmidt P, Biessmann F, Teubner T. Transparency and trust in artificial intelligence systems. J Decis Syst 2020;29(4):260–278. Crossref, Google Scholar7. Leibig C, Brehmer M, Bunk S, Byng D, Pinker K, Umutlu L. Combining the strengths of radiologists and AI for breast cancer screening: a retrospective analysis. Lancet Digit Health 2022;4(7):e507–e519. Crossref, Medline, Google ScholarArticle HistoryReceived: Mar 27 2023Revision requested: Mar 31 2023Revision received: Apr 3 2023Accepted: Apr 4 2023Published online: May 02 2023 FiguresReferencesRelatedDetailsAccompanying This ArticleAutomation Bias in Mammography: The Impact of Artificial Intelligence BI-RADS Suggestions on Reader PerformanceMay 2 2023RadiologyRecommended Articles Breast Cancer Risk Prediction Using Deep LearningRadiology2021Volume: 301Issue: 3pp. 559-560BI-RADS Category 3 Is a Safe and Effective Alternative to Biopsy or Surgical ExcisionRadiology2020Volume: 296Issue: 1pp. 42-43Disparities in Imaging Surveillance after a DCIS Diagnosis Elucidate Persistent Inequities in the Breast Cancer Care ContinuumRadiology2023Volume: 307Issue: 1A Warning about Warning Signals for Interpreting MammogramsRadiology2021Volume: 302Issue: 2pp. 284-285Addressing Racial Inequities in Access to State-of-the-Art Breast ImagingRadiology2022Volume: 306Issue: 2See More RSNA Education Exhibits 2022 New Trends in Breast Density - What Should We Know?Digital Posters2022Certifications, Audits, And National Benchmarks: Breaking Down The Basics For The New Mammography AttendingDigital Posters2021Are We Ready to Substitute Synthesized Mammography for Full-Field Digital Mammography?Digital Posters2019 RSNA Case Collection BI-RADS 2: Dystrophic CalcificationsRSNA Case Collection2022Invasive Lobular CarcinomaRSNA Case Collection2021 Post vaccination axillary adenopathyRSNA Case Collection2021 Vol. 307, No. 4 Metrics Altmetric Score PDF download