Classification of Parkinson’s Disease using Speech Signal with Machine Learning and Deep Learning Approaches

人工智能 机器学习 随机森林 计算机科学 朴素贝叶斯分类器 深度学习 决策树 梯度升压 支持向量机 Boosting(机器学习) 分类 分类器(UML) 人工神经网络 逻辑回归 深信不疑网络
作者
Senjuti Rahman,Mehedi Hasan,Ajay Krishno Sarkar,Fayez Khan
标识
DOI:10.24018/ejece.2023.7.2.488
摘要

Parkinson's disease (PD) is a chronic neurological condition that is growing in prevalence and manifests both motor and non-motor symptoms. Most PD patients have trouble speaking, writing, and walking during the early stages of the disease. Analysis of speech problems has been effective in identifying Parkinson's disease. According to studies, 90% of Parkinson's disease patients experience speech problems. Even though there is no known cure for Parkinson's disease, using the right medication at an early stage can greatly reduce the symptoms. One of the key categorization issues for the diagnosis of Parkinson's disease is the correct interpretation of speech signals. The major goal of this project is to use deep learning and machine learning approaches to predict and categorize PD patients at an early stage. A trustworthy dataset from the UCI repository for Parkinson disease has been used to evaluate the method's performance. Several classification models are successfully used in this study for classification tasks, including Extreme Gradient Boosting (XGBoost), Ada Boost, Light Gradient Boosting Machine, CatBoost, Gradient Boosting, Random Forest, Ridge, Decision Tree, Logistic Regression, K Neighbors, SVM - Linear Kernel, Naive Bayes, and deep neural networks (DNN1, DNN2, DNN3). The Extreme Gradient Boosting classifier achieved the greatest classification accuracy of 92.18% (among the machine learning classifiers). By using the chosen features as input, the three layer deep neural network (DNN2) has the best accuracy of 95.41% amongst deep learning techniques. The collected results indicate that deep neural networks performed better than machine learning methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠然完成签到,获得积分10
2秒前
典雅长颈鹿完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
lyz完成签到 ,获得积分10
5秒前
Lucas应助SeKa采纳,获得10
5秒前
6秒前
6秒前
无花果应助曾经的便当采纳,获得10
7秒前
8秒前
高高发布了新的文献求助10
9秒前
小疯发布了新的文献求助10
10秒前
Lily发布了新的文献求助10
11秒前
不想干活应助科研菜鸟采纳,获得10
12秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
benben应助科研通管家采纳,获得10
15秒前
15秒前
Mat应助科研通管家采纳,获得10
15秒前
不想干活应助科研通管家采纳,获得20
15秒前
GQ发布了新的文献求助10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
核桃应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
16秒前
核桃应助科研通管家采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4215140
求助须知:如何正确求助?哪些是违规求助? 3749528
关于积分的说明 11794366
捐赠科研通 3415535
什么是DOI,文献DOI怎么找? 1874436
邀请新用户注册赠送积分活动 928521
科研通“疑难数据库(出版商)”最低求助积分说明 837677