Reinforced Adaptive Knowledge Learning for Multimodal Fake News Detection

假新闻 计算机科学 互联网隐私
作者
Litian Zhang,Xiaoming Zhang,Ziyi Zhou,Feiran Huang,Chaozhuo Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (15): 16777-16785 被引量:10
标识
DOI:10.1609/aaai.v38i15.29618
摘要

Nowadays, detecting multimodal fake news has emerged as a foremost concern since the widespread dissemination of fake news may incur adverse societal impact. Conventional methods generally focus on capturing the linguistic and visual semantics within the multimodal content, which fall short in effectively distinguishing the heightened level of meticulous fabrications. Recently, external knowledge is introduced to provide valuable background facts as complementary to facilitate news detection. Nevertheless, existing knowledge-enhanced endeavors directly incorporate all knowledge contexts through static entity embeddings, resulting in the potential noisy and content-irrelevant knowledge. Moreover, the integration of knowledge entities makes it intractable to model the sophisticated correlations between multimodal semantics and knowledge entities. In light of these limitations, we propose a novel Adaptive Knowledge-Aware Fake News Detection model, dubbed AKA-Fake. For each news, AKA-Fake learns a compact knowledge subgraph under a reinforcement learning paradigm, which consists of a subset of entities and contextual neighbors in the knowledge graph, restoring the most informative knowledge facts. A novel heterogeneous graph learning module is further proposed to capture the reliable cross-modality correlations via topology refinement and modality-attentive pooling. Our proposal is extensively evaluated over three popular datasets, and experimental results demonstrate the superiority of AKA-Fake.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助HY采纳,获得10
1秒前
打打应助Eason采纳,获得10
1秒前
茉莉发布了新的文献求助30
1秒前
2秒前
涛哥完成签到,获得积分10
2秒前
研友_Z1xNWn发布了新的文献求助20
3秒前
3秒前
研友_xLOMQZ完成签到,获得积分10
4秒前
累啊发布了新的文献求助10
4秒前
怕孤独的代亦关注了科研通微信公众号
5秒前
wxy发布了新的文献求助10
5秒前
空隙完成签到,获得积分10
6秒前
天天快乐应助糊涂的MJ采纳,获得10
7秒前
852应助1111采纳,获得10
8秒前
YUNJIE发布了新的文献求助10
8秒前
surge发布了新的文献求助10
9秒前
10秒前
10秒前
Zhy完成签到,获得积分10
10秒前
11秒前
尛瞐慶成发布了新的文献求助20
12秒前
12秒前
一区top完成签到 ,获得积分10
13秒前
13秒前
细腻慕儿完成签到 ,获得积分10
14秒前
14秒前
七田皿发布了新的文献求助10
15秒前
Jemmy发布了新的文献求助10
15秒前
16秒前
HY发布了新的文献求助10
16秒前
17秒前
Eason发布了新的文献求助10
17秒前
累啊完成签到,获得积分10
17秒前
Melly完成签到,获得积分10
17秒前
18秒前
blaiteness完成签到 ,获得积分10
18秒前
蔚蓝天空发布了新的文献求助10
19秒前
星辰大海应助tregear采纳,获得30
19秒前
厚厚应助YPNMM采纳,获得10
19秒前
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761