Mathematical Model of Graphene Yield in Ultrasonic Preparation

石墨烯 产量(工程) 超声波传感器 材料科学 工艺工程 复合材料 纳米技术 工程类 声学 物理
作者
Jinquan Yi,Baoshan Gu,Chengling Kan,Xudong Lv,Zhifeng Wang,Peiyan Yang,Haoqi Zhao
出处
期刊:Processes [Multidisciplinary Digital Publishing Institute]
卷期号:12 (4): 674-674 被引量:2
标识
DOI:10.3390/pr12040674
摘要

Based on the Box–Behnken design (BBD) methodology, an experimental study of the preparation of graphene using ultrasonication was conducted. The yield of graphene served as the response variable, with ultrasonication process time, ultrasonic power, the graphite initial weight, and their interactive effects acting as the independent variables influencing the yield. A multivariate nonlinear regression model was established to describe the ultrasonic production of graphene. Verification of the experiments suggests that the developed multivariate nonlinear regression model is highly significant and provides a good fit, enabling an effective prediction of the graphene yield. The yield of graphene was found to increase with higher ultrasonic power but decrease with longer ultrasonication times and the initial weight of the graphite. The optimal process parameters according to the regression model were determined to be 30 min of ultrasonication time, an ultrasonic power of 1500 W, and a graphite initial weight of 0.5 g. Under these conditions, the yield of graphene reached 31.6%, with a prediction error of 2.8% relative to the actual value. Furthermore, the results were corroborated with the aid of scanning electron microscopy (SEM), Raman spectroscopy, and transmission electron microscopy (TEM). It was observed that under constant ultrasonic power and graphite initial weight, a reduction in the ultrasonication processing time led to an increase in the thickness of the graphene. Continuing to increase the ultrasonication time beyond 30 min did not decrease the thickness of the graphene but rather reduced its lateral size. Decreasing the ultrasonic power resulted in thicker graphene, and even with an extended ultrasonication time, the quality of the graphene was inferior compared to that produced under the optimal processing parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xing发布了新的文献求助10
3秒前
yehuaiyu完成签到,获得积分10
5秒前
打打应助九花玉露丸采纳,获得10
6秒前
顺心电灯胆完成签到,获得积分10
6秒前
甜甜的以筠完成签到 ,获得积分10
13秒前
小韩完成签到,获得积分20
14秒前
leee啊发布了新的文献求助10
16秒前
无语完成签到,获得积分10
17秒前
包容的映天完成签到 ,获得积分10
18秒前
19秒前
123关注了科研通微信公众号
20秒前
大庆完成签到,获得积分10
23秒前
CipherSage应助爱听歌笑寒采纳,获得10
23秒前
25秒前
zcy发布了新的文献求助10
27秒前
HHW关闭了HHW文献求助
27秒前
momo完成签到,获得积分10
28秒前
斯文败类应助小达采纳,获得10
28秒前
28秒前
33秒前
小雨点完成签到 ,获得积分10
34秒前
36秒前
37秒前
汉堡包应助zcy采纳,获得10
39秒前
39秒前
40秒前
Gryphon完成签到,获得积分10
40秒前
于意发布了新的文献求助10
42秒前
zhou发布了新的文献求助10
43秒前
yuan发布了新的文献求助10
44秒前
45秒前
小小孙发布了新的文献求助10
46秒前
香蕉觅云应助小心科研采纳,获得10
47秒前
49秒前
zym完成签到 ,获得积分10
50秒前
WerWu完成签到,获得积分10
50秒前
54秒前
小马甲应助ccc采纳,获得10
55秒前
zhou完成签到,获得积分20
56秒前
上官若男应助科研通管家采纳,获得10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4801876
求助须知:如何正确求助?哪些是违规求助? 4119892
关于积分的说明 12745639
捐赠科研通 3851850
什么是DOI,文献DOI怎么找? 2121566
邀请新用户注册赠送积分活动 1143686
关于科研通互助平台的介绍 1033904