GA-DRL: Graph Neural Network-Augmented Deep Reinforcement Learning for DAG Task Scheduling Over Dynamic Vehicular Clouds

强化学习 计算机科学 人工神经网络 调度(生产过程) 图形 人工智能 分布式计算 理论计算机科学 运营管理 经济
作者
Zhang Liu,Lianfen Huang,Zhibin Gao,Manman Luo,Seyyedali Hosseinalipour,Huaiyu Dai
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 4226-4242 被引量:5
标识
DOI:10.1109/tnsm.2024.3387707
摘要

Vehicular Clouds (VCs) are modern platforms for processing of computation-intensive tasks over vehicles. Such tasks are often represented as Directed Acyclic Graphs (DAGs) consisting of interdependent vertices/subtasks and directed edges. However, efficient scheduling of DAG tasks over VCs presents significant challenges, mainly due to the dynamic service provisioning of vehicles within VCs and non-Euclidean representation of DAG tasks' topologies. In this paper, we propose a Graph neural network-Augmented Deep Reinforcement Learning scheme (GA-DRL) for the timely scheduling of DAG tasks over dynamic VCs. In doing so, we first model the VC-assisted DAG task scheduling as a Markov decision process. We then adopt a multi-head Graph ATtention network (GAT) to extract the features of DAG subtasks. Our developed GAT enables a two-way aggregation of the topological information in a DAG task by simultaneously considering predecessors and successors of each subtask. We further introduce non-uniform DAG neighborhood sampling through codifying the scheduling priority of different subtasks, which makes our developed GAT generalizable to completely unseen DAG task topologies. Finally, we augment GAT into a double deep Q-network learning module to conduct subtask-to-vehicle assignment according to the extracted features of subtasks, while considering the dynamics and heterogeneity of the vehicles in VCs. Through simulating various DAG tasks under real-world movement traces of vehicles, we demonstrate that GA-DRL outperforms existing benchmarks in terms of DAG task completion time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半柚发布了新的文献求助10
刚刚
fosca完成签到,获得积分10
1秒前
1秒前
1秒前
南漂完成签到,获得积分10
1秒前
1秒前
李健应助jw采纳,获得10
2秒前
2秒前
fanboyz完成签到 ,获得积分10
2秒前
Dominic7888完成签到,获得积分10
2秒前
格非完成签到,获得积分10
2秒前
JCao727完成签到,获得积分10
2秒前
3秒前
柔弱花生完成签到,获得积分10
3秒前
4秒前
JamesPei应助小太阳采纳,获得30
4秒前
风趣铅笔完成签到,获得积分10
5秒前
5秒前
5秒前
miko完成签到,获得积分10
5秒前
老实曼香发布了新的文献求助10
5秒前
6秒前
和谐的芷天完成签到,获得积分10
6秒前
一帆风顺发布了新的文献求助10
6秒前
怡然雨雪完成签到,获得积分10
6秒前
zhang005on发布了新的文献求助10
6秒前
谷歌狗完成签到,获得积分10
6秒前
ddd完成签到,获得积分10
6秒前
zhao完成签到,获得积分10
7秒前
雾野与晚风完成签到,获得积分10
7秒前
ABCDE完成签到,获得积分10
7秒前
7秒前
笛子发布了新的文献求助10
7秒前
JiangWen完成签到,获得积分10
8秒前
8秒前
yyyy完成签到,获得积分20
8秒前
warmth完成签到,获得积分10
8秒前
lmh关注了科研通微信公众号
9秒前
tracer完成签到,获得积分10
9秒前
Yh完成签到,获得积分10
9秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173