AHFormer: Hypergraph embedding coding transformer and adaptive aggregation network for intelligent fault diagnosis under noise interference

计算机科学 超图 卷积神经网络 模式识别(心理学) 稳健性(进化) 噪声测量 嵌入 人工智能 数据挖掘 降噪 数学 生物化学 基因 离散数学 化学
作者
Fangyuan Lei,Ziwei Chen,Xiangmin Luo,Long Xu,Te Xue,Jianjian Jiang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102518-102518 被引量:9
标识
DOI:10.1016/j.aei.2024.102518
摘要

Recently, convolutional neural network-based methods are widely employed in the field of fault diagnosis to capture feature information from samples. However, during the process of device signal acquisition, external strong noise interference can result in a superimposed state of collected signals and noise, making it difficult to distinguish between them. This leads to a significant decline in the performance of diagnostic models. To improve fault diagnosis accuracy under conditions of strong noise interference, we propose a method called AHFormer, which is based on hypergraph embedding encoded Transformer and adaptive information fusion. AHFormer extracts and integrates both local and global features, thus enhancing the preservation of structural and semantic information throughout the network evolution process. In specific terms, we first encode the sample signals into hypergraph structures to utilize hyperedges for capturing higher-order correlations within the samples. Subsequently, we employ the filtering properties of hypergraph convolution to perform secondary denoising on the samples. Concurrently, we utilize a message-passing mechanism to aggregate local information within the samples, enhancing the complementarity among different pieces of information within the sample signals. Next, an improved Transformer employs to extract the global information from the samples. Finally, to effectively utilize semantic information with different characteristics, we have designed an adaptive information aggregation module. We conduct Case studies, ablation experiments, and robustness analyzes on datasets of different sizes. The experimental results show that under Gaussian noise, impulse noise and stochastic masking interference, the accuracy of AHFormer method is as high as 98.88%, 98.78% and 91.14%, respectively, which is much higher than other baseline methods. In the quantitative evaluation of features, the J value is increased by an average of 35.9% compared with the best method, showing excellent anti-interference and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨羽发布了新的文献求助10
刚刚
善学以致用应助仙都丽娜采纳,获得10
1秒前
re发布了新的文献求助10
1秒前
wuli凯凯啊完成签到,获得积分10
1秒前
科研通AI5应助YWK采纳,获得10
1秒前
1秒前
科研通AI5应助虚幻的凡梦采纳,获得10
3秒前
4秒前
4秒前
4秒前
LBH完成签到,获得积分10
5秒前
满意若烟发布了新的文献求助10
5秒前
李健应助爱啃大虾采纳,获得10
5秒前
马闹闹发布了新的文献求助10
6秒前
NexusExplorer应助超级的芷巧采纳,获得10
6秒前
科研通AI5应助wenxu采纳,获得10
7秒前
7秒前
DAYDAY发布了新的文献求助20
7秒前
柚两下子完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
情怀应助满意若烟采纳,获得10
9秒前
立麦发布了新的文献求助10
9秒前
10秒前
Dreamhappy发布了新的文献求助10
10秒前
figure完成签到 ,获得积分10
12秒前
科研通AI5应助灰灰采纳,获得50
13秒前
13秒前
慕青应助HC采纳,获得10
13秒前
13秒前
Akim应助re采纳,获得10
14秒前
xqh发布了新的文献求助10
14秒前
14秒前
14秒前
隐形曼青应助小乌龟采纳,获得20
15秒前
15秒前
16秒前
墨羽完成签到,获得积分10
17秒前
17秒前
爱啃大虾发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4647379
求助须知:如何正确求助?哪些是违规求助? 4036822
关于积分的说明 12485668
捐赠科研通 3726136
什么是DOI,文献DOI怎么找? 2056592
邀请新用户注册赠送积分活动 1087550
科研通“疑难数据库(出版商)”最低求助积分说明 968984