已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robust Semantic Segmentation for Automatic Crack Detection Within Pavement Images Using Multi-Mixing of Global Context and Local Image Features

人工智能 计算机视觉 分割 背景(考古学) 图像分割 计算机科学 混合(物理) 模式识别(心理学) 尺度空间分割 图像(数学) 地质学 物理 古生物学 量子力学
作者
Hang Zhang,Allen A. Zhang,Zishuo Dong,Anzheng He,Yang Liu,You Zhan,Kelvin C. P. Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 11282-11303 被引量:8
标识
DOI:10.1109/tits.2024.3360263
摘要

Accurate identification of cracks at the pixel level on intricate asphalt pavements represents a crucial challenge in the domain of intelligent pavement assessment. The current advanced deep-learning networks encounter limitations in simultaneously capturing both the global context and local features of cracks, leading to discontinuous segmentation results and suboptimal recovery of local details. This paper proposes a robust architecture named Mix-Graph CrackNet to present an efficacious solution for this challenge. The Mix-Graph CrackNet, as proposed, is designed to mix the global context and local features multiple times, allowing for a comprehensively understanding of the essential features. Specifically, this paper develops the learnable parallel convolutional-Transformer mixing module to parallelly capture the sophisticated local features as well as the crucial global context. In addition, a new fusion unit is devised in the paper and deployed in the learnable parallel convolutional-Transformer mixing module. The proposed fusion unit is capable of effectively mixing contextual features extracted at both global and local scales while retaining an abundant level of textural details germane to the crack. Moreover, this paper constructs a graph-based skip connection that functions as a shortcut connecting the encoder and decoder, with the primary objective of mitigating information decay. The experimental results are remarkable, with the Mix-Graph CrackNet achieving F-measure and Intersection-Over-Union of 90.37% and 82.43%, respectively, on 1000 testing images. Based on the performance evaluations conducted on both public and private datasets, the proposed Mix-Graph CrackNet architecture demonstrates a significantly superior detection accuracy in comparison to several state-of-the-art models for semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七少爷发布了新的文献求助10
刚刚
2秒前
4秒前
CipherSage应助热情的寄瑶采纳,获得10
5秒前
heli发布了新的文献求助10
6秒前
茉克发布了新的文献求助30
6秒前
乐乐应助云端采纳,获得10
6秒前
111关闭了111文献求助
9秒前
10秒前
meihui完成签到 ,获得积分10
11秒前
香樟园完成签到,获得积分10
15秒前
芋头发布了新的文献求助10
15秒前
15秒前
勤奋幻柏完成签到,获得积分10
18秒前
云端完成签到,获得积分10
19秒前
21秒前
24秒前
27秒前
小蘑菇应助艾艾采纳,获得10
28秒前
29秒前
大福老师发布了新的文献求助10
29秒前
32秒前
王佳佳发布了新的文献求助10
37秒前
37秒前
zard完成签到,获得积分20
38秒前
阿离完成签到 ,获得积分10
38秒前
NexusExplorer应助咿咿呀呀采纳,获得10
38秒前
40秒前
xx应助鬲木采纳,获得30
42秒前
43秒前
海棠微雨发布了新的文献求助20
43秒前
XZZH完成签到,获得积分10
43秒前
guozizi发布了新的文献求助10
43秒前
有缘人完成签到,获得积分10
46秒前
正直的以冬完成签到,获得积分10
46秒前
bkagyin应助人间炡气机采纳,获得30
47秒前
小蘑菇应助王佳佳采纳,获得10
48秒前
damai完成签到,获得积分10
49秒前
咿咿呀呀发布了新的文献求助10
54秒前
机智寻雪完成签到 ,获得积分10
58秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897482
求助须知:如何正确求助?哪些是违规求助? 3441599
关于积分的说明 10822394
捐赠科研通 3166415
什么是DOI,文献DOI怎么找? 1749412
邀请新用户注册赠送积分活动 845306
科研通“疑难数据库(出版商)”最低求助积分说明 788630