Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks

记忆电阻器 卷积神经网络 计算机科学 计算机体系结构 非易失性存储器 并行计算 计算机硬件 人工智能 电子工程 工程类
作者
Samarth Jain,Sifan Li,Haofei Zheng,Lingqi Li,Xuanyao Fong,Kah‐Wee Ang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1) 被引量:1
标识
DOI:10.1038/s41467-025-58039-3
摘要

Memristor crossbar arrays (CBAs) based on two-dimensional (2D) materials have emerged as a potential solution to overcome the limitations of energy consumption and latency associated with conventional von Neumann architectures. However, current 2D memristor CBAs encounter specific challenges such as limited array size, high sneak path current, and lack of integration with peripheral circuits for hardware compute-in-memory (CIM) systems. In this work, we demonstrate a hardware CIM system leveraging heterogeneous integration of scalable 2D hafnium diselenide (HfSe2) memristors and silicon (Si) selectors, as well as their integration with peripheral control-sensing circuits. The 32 × 32 one-selector-one-memristor (1S1R) array mitigates sneak current, achieving 89% yield. The integrated CBA demonstrates an improvement of energy efficiency and response time comparable to state-of-the-art 2D materials-based memristors. To take advantage of low latency devices for achieving low energy systems, we use time-domain sensing circuits with the CBA, whose power consumption surpasses that of analog-to-digital converters (ADCs) by 2.5 folds. The implemented full-hardware binary convolutional neural network (CNN) achieves remarkable accuracy (97.5%) in a pattern recognition task. Additionally, in-built activation functions enhance the energy efficiency of the system. This silicon-compatible heterogeneous integration approach presents a promising hardware solution for artificial intelligence (AI) applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闵夏完成签到,获得积分10
1秒前
冷傲板栗完成签到,获得积分10
2秒前
ekm7k完成签到,获得积分10
2秒前
lz完成签到,获得积分10
2秒前
2秒前
悦耳怜珊完成签到,获得积分10
3秒前
祖问筠完成签到,获得积分10
3秒前
窝窝头发布了新的文献求助10
3秒前
冷傲迎梦发布了新的文献求助10
4秒前
健壮的尔烟完成签到,获得积分10
6秒前
Iris完成签到,获得积分10
6秒前
6秒前
todaay完成签到,获得积分10
7秒前
童绿柳完成签到,获得积分10
8秒前
batmanrobin完成签到,获得积分10
8秒前
地球发布了新的文献求助10
9秒前
今后应助stuuuuuuuuuuudy采纳,获得10
9秒前
myy完成签到,获得积分10
9秒前
伶俐一曲完成签到,获得积分10
9秒前
cxm完成签到,获得积分10
9秒前
10秒前
麦凯发布了新的文献求助10
10秒前
冰激凌完成签到,获得积分10
12秒前
贪玩的网络完成签到 ,获得积分10
13秒前
14秒前
广州南完成签到 ,获得积分10
14秒前
上官若男应助iuhgnor采纳,获得10
14秒前
todaay发布了新的文献求助10
14秒前
14秒前
曹中明完成签到,获得积分10
14秒前
echoxq完成签到,获得积分10
15秒前
琴楼完成签到,获得积分10
15秒前
傻瓜完成签到 ,获得积分10
15秒前
遇上就这样吧应助科研GO采纳,获得10
15秒前
fuxiao完成签到 ,获得积分10
16秒前
离岸完成签到,获得积分10
16秒前
Potato完成签到,获得积分10
17秒前
月亮上的猫完成签到,获得积分10
18秒前
zyyyyyy完成签到,获得积分10
19秒前
小手冰凉完成签到 ,获得积分10
19秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A Student's Guide to Maxwell's Equations 200
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827474
求助须知:如何正确求助?哪些是违规求助? 3369741
关于积分的说明 10457440
捐赠科研通 3089439
什么是DOI,文献DOI怎么找? 1699861
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263