Exploring the correlation between design of experiments and machine learning prediction accuracy in ultra-precision hard turning of AISI D2 with CBN insert: a comparative study of Taguchi and full factorial designs

田口方法 插入(复合材料) 析因实验 实验设计 分式析因设计 正交数组 工程类 相关性 工程制图 制造工程 机械工程 计算机科学 人工智能 机器学习 数学 统计 几何学
作者
Ugonna Loveday Adizue,Márton Takács
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:137 (3-4): 2061-2090 被引量:10
标识
DOI:10.1007/s00170-025-15186-7
摘要

Abstract Efficient optimization of processes involves excellent knowledge of the influence cum contributing effect on product quality, reliability, and improved productivity via precision machining in modern manufacturing technology. Thus, this research explores the correlation between design of experiment, process optimization, and predictive accuracy of machine learning models. An ultraprecision hard turning finishing experiment was carried out on an AISI D2 of 62 HRCs via a CBN insert with two different experimental designs, namely, the Taguchi design and the full factorial design. The process parameters, cutting speed ( v c ), feed ( f ), and depth of cut ( ɑ p ) were investigated with signal‒to‒noise ratios ( S/N ) and the response surface method ( RSM ), which are suitable for each experimental design for response parameters: surface roughness ( R ɑ ) and the material removal rate ( MRR ), respectively. The Bayesian regularization neural network (BRNN)–based machine learning model was implemented to estimate the surface roughness with data from each experimental design. The results show that surface roughness was strongly influenced by the feed, whereas the material removal rate was affected by all process parameters. The model performance significantly improved as additional process parameters were introduced in the full factorial design, with an R 2 of 0.99% and a MAPE of 8.14%. An empirical equation for estimating R ɑ is expressed in matrix form using the weights and biases from the BRNN. For the integration of the proposed model in real-time manufacturing and decision-making, an additional experimental test was performed to validate the models with a new dataset. The results show that the full factorial design has an improvement of 36% in predictive accuracy with minimum error over the Taguchi design and provides excellent interpretability of the process parameters. A dual assessment metric criterion was employed to ascertain the credibility of the models with corresponding designs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助慕子默采纳,获得10
刚刚
刚刚
临时演员发布了新的文献求助10
1秒前
Edward完成签到,获得积分10
1秒前
积极行天发布了新的文献求助10
1秒前
大秀子完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
baize发布了新的文献求助10
2秒前
asdfzxcv应助里希希采纳,获得10
2秒前
852应助bb采纳,获得10
2秒前
华仔应助东东采纳,获得10
2秒前
王成凤发布了新的文献求助10
3秒前
JamesPei应助无心的钢铁侠采纳,获得10
3秒前
明理的凡霜完成签到,获得积分10
3秒前
3秒前
深情安青应助晓豪采纳,获得10
3秒前
3秒前
li发布了新的文献求助10
4秒前
4秒前
甜蜜妙竹发布了新的文献求助10
4秒前
李健应助ask采纳,获得10
4秒前
4秒前
小蘑菇应助Nil采纳,获得10
4秒前
zhao发布了新的文献求助50
4秒前
悦悦完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
完美世界应助neroil采纳,获得10
5秒前
5秒前
6秒前
星期8发布了新的文献求助10
6秒前
喝奶粉完成签到 ,获得积分10
6秒前
Reny发布了新的文献求助10
7秒前
鲤鱼千亦发布了新的文献求助10
7秒前
科研通AI6应助Joy采纳,获得10
7秒前
科研通AI6应助开朗的访彤采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654066
求助须知:如何正确求助?哪些是违规求助? 4791720
关于积分的说明 15067232
捐赠科研通 4812666
什么是DOI,文献DOI怎么找? 2574639
邀请新用户注册赠送积分活动 1530128
关于科研通互助平台的介绍 1488863