The Role of Artificial Intelligence in Cardiovascular Disease Risk Prediction: An Updated Review on Current Understanding and Future Research

医学 疾病 风险评估 转化式学习 医疗保健 人工智能 精密医学 风险分析(工程) 可穿戴技术 范围(计算机科学) 可穿戴计算机 机器学习 重症监护医学 计算机科学 病理 心理学 教育学 计算机安全 程序设计语言 经济 嵌入式系统 经济增长
作者
Angad Tiwari,Purva C. Shah,Harendra Kumar,Tanvi Borse,A. Arun,Manognya Chekragari,Sidhant Ochani,Yash R. Shah,Adithan Ganesh,Rezwan Ahmed,Ashish Sharma,Maneeth Mylavarapu
出处
期刊:Current Cardiology Reviews [Bentham Science Publishers]
卷期号:21
标识
DOI:10.2174/011573403x351048250329170744
摘要

Abstract: Cardiovascular disease (CVD) Continues to be the leading cause of mortality worldwide, underscoring the critical need for effective prevention and management strategies. The ability to predict cardiovascular risk accurately and cost-effectively is central to improving patient outcomes and reducing the global burden of CVD. While useful, traditional tools used for risk assessment are often limited in their scope and fail to adequately account for atypical presentations and complex patient profiles. These limitations highlight the necessity for more advanced approaches, particularly integrating artificial intelligence (AI) into cardiovascular risk prediction. Our review explores the transformative role of AI in enhancing the accuracy, efficiency, and accessibility of cardiovascular risk prediction models. The implementation of AI-driven risk assessment tools has shown promising results, not only in improving CVD mortality rates but also in enhancing quality of life (QOL) markers and reducing healthcare costs. Machine learning (ML) algorithms predicted 2-year survival rates after MI with improved accuracy compared to traditional models. Deep Learning (DL) forecasted hypertension risk with a 91.7% accuracy based on electronic health records. Furthermore, AI-driven ECG (Electrocardiography) analysis has demonstrated high precision in identifying left ventricular systolic dysfunction, even with noisy single-lead data from wearable devices. These tools enable more personalized treatment strategies, foster greater patient engagement, and support informed decision-making by healthcare providers. Unfortunately, the widespread adoption of AI in CVD risk assessment remains a challenge, largely due to a lack of education and acceptance among healthcare professionals. To overcome these barriers, it is crucial to promote broader education on the benefits and applications of AI in cardiovascular risk prediction. By fostering a greater understanding and acceptance of these technologies, we can accelerate their integration into clinical practice, ultimately aiming to mitigate the global impact of CVD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搞怪面包发布了新的文献求助10
刚刚
文艺柠檬完成签到,获得积分10
刚刚
zhutae完成签到,获得积分10
1秒前
疯狂的少女完成签到,获得积分10
1秒前
李健应助四季大枣采纳,获得10
1秒前
Queen发布了新的文献求助10
1秒前
Juvenilesy完成签到,获得积分10
2秒前
3秒前
大胆的娩完成签到,获得积分10
3秒前
柯一一应助桂桂阿云采纳,获得10
4秒前
Travler发布了新的文献求助20
4秒前
科研通AI2S应助满意的夜柳采纳,获得10
5秒前
Wayne_Sun完成签到,获得积分10
6秒前
简单点发布了新的文献求助10
6秒前
orixero应助郑159753采纳,获得10
6秒前
yysama完成签到,获得积分10
6秒前
orixero应助Ryan采纳,获得10
6秒前
Dr大壮发布了新的文献求助10
9秒前
9秒前
9秒前
喜悦念柏完成签到,获得积分10
10秒前
冷艳的酸奶完成签到,获得积分10
10秒前
10秒前
10秒前
欢呼的汉堡完成签到,获得积分10
10秒前
sajelsch关注了科研通微信公众号
11秒前
11秒前
毛男完成签到,获得积分10
11秒前
zhuzhu完成签到,获得积分10
12秒前
深情安青应助Lim采纳,获得10
12秒前
wongcong发布了新的文献求助10
12秒前
琼仔仔发布了新的文献求助20
12秒前
12秒前
酒神的悔意完成签到,获得积分10
13秒前
SYLH应助大力水手采纳,获得10
13秒前
13秒前
Jasper应助健壮听露采纳,获得10
14秒前
朴实忆安完成签到,获得积分10
14秒前
风追素心发布了新的文献求助10
14秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905716
求助须知:如何正确求助?哪些是违规求助? 3450983
关于积分的说明 10863349
捐赠科研通 3176390
什么是DOI,文献DOI怎么找? 1754832
邀请新用户注册赠送积分活动 848529
科研通“疑难数据库(出版商)”最低求助积分说明 791050