Identification of Biomarkers Associated with the Prognoses of Colorectal Cancer Patients

结直肠癌 比例危险模型 肿瘤科 医学 小桶 癌症 内科学 生存分析 列线图 生物 基因 转录组 基因表达 遗传学
作者
Yuejun Fang,Xiaoan Zhan
出处
期刊:Digestion [Karger Publishers]
卷期号:104 (2): 148-162 被引量:6
标识
DOI:10.1159/000528084
摘要

Colorectal cancer (CRC) is a common cancer. As metastasis and recurrence are main causes of CRC death, it is of great significance to find prognostic biomarkers.Data related to CRC were collected from GEO database. The patients were grouped based on clinical information, and the differentially expressed genes (DEGs) were obtained by differential analysis. GO and KEGG pathway enrichment analyses were conducted based on DEGs. Cox combined with LASSO regression analysis was applied to screen out the key genes that used to build the prognostic model. Survival curve and receiver operating characteristic curve were employed to evaluate the validity and reliability of the model. Cox regression analysis was applied to determine the independence of risk score. GSEA and GSVA analyses were performed on patients with different risks according to the risk model scores, and the prognostic nomogram was plotted combined with clinical data. Also, qRT-PCR was applied to examine the expression status of the screened signatures in clinical cases.We obtained 302 DEGs by dividing CRC patients into early-stage and advanced-stage groups. The results of enrichment analyses demonstrated that the DEGs were mainly concentrated in tissues of extracellular matrix, epithelial cell proliferation, and cell adhesion-related pathways. Regression identified 9 hub genes notably correlated with prognosis, including CLK1, SLC2A3, LIPG, EPHB2, ATOH1, PLCB4, GZMB, CKMT2, and CXCL11. The validation of the risk model proved that the risk model was accurate and could independently determine the prognosis of patients. Finally, differences were found in pathway activity of extracellular matrix secretion, plaque secretion, Notch signaling pathway, and tight junctions in high-risk and low-risk patients. In addition to LIPG and CKMT2, other feature genes were notably overexpressed in CRC tumor tissues.The results proved that the expression levels of the 9 biomarkers could be used to predict the prognosis of CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高山下的花环关注了科研通微信公众号
1秒前
2秒前
2秒前
高高的山兰完成签到 ,获得积分10
2秒前
个性归尘应助小小旭呀采纳,获得30
2秒前
木头123发布了新的文献求助10
3秒前
3秒前
Owen应助kkkkkkkk采纳,获得10
3秒前
Yy杨优秀发布了新的文献求助10
4秒前
季双双发布了新的文献求助10
4秒前
LiuHao完成签到 ,获得积分10
5秒前
搞怪便当完成签到,获得积分10
5秒前
andy完成签到,获得积分10
5秒前
huang96完成签到,获得积分10
5秒前
AI完成签到 ,获得积分10
6秒前
CodeCraft应助不得采纳,获得10
7秒前
Deerq发布了新的文献求助10
7秒前
Easson_Wen完成签到,获得积分10
8秒前
8秒前
aaa发布了新的文献求助10
8秒前
ww完成签到 ,获得积分10
9秒前
9秒前
思念需要什么完成签到,获得积分10
9秒前
9秒前
Wangyicong应助小九采纳,获得10
10秒前
hjyylab应助学术蝗虫采纳,获得10
10秒前
daniel完成签到,获得积分10
10秒前
10秒前
慕青应助痴情的如天采纳,获得10
10秒前
acadedog完成签到 ,获得积分10
11秒前
xiexuqin完成签到,获得积分10
12秒前
14秒前
爆米花应助萌酱采纳,获得10
14秒前
鱼儿发布了新的文献求助10
14秒前
泯恩仇完成签到,获得积分10
15秒前
科研通AI5应助Zhi_S采纳,获得10
15秒前
15秒前
doge完成签到,获得积分10
16秒前
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838196
求助须知:如何正确求助?哪些是违规求助? 3380471
关于积分的说明 10514526
捐赠科研通 3100044
什么是DOI,文献DOI怎么找? 1707291
邀请新用户注册赠送积分活动 821625
科研通“疑难数据库(出版商)”最低求助积分说明 772816