Prediction and Evaluation of Indirect Carbon Emission from Electrical Consumption in Multiple Full-Scale Wastewater Treatment Plants via Automated Machine Learning-Based Analysis

废水 满标度 比例(比率) 碳纤维 工艺工程 消费(社会学) 计算机科学 环境科学 废物管理 环境工程 工程类 算法 计算机视觉 物理 复合数 量子力学 社会科学 社会学
作者
Runze Xu,Yi Li,Yuting Luo,Fang Fang,Qian Feng,Jiashun Cao,Jingyang Luo
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:3 (3): 360-372 被引量:36
标识
DOI:10.1021/acsestengg.2c00306
摘要

The indirect carbon emission from electrical consumption of wastewater treatment plants (WWTPs) accounts for large proportions of their total carbon emissions, which deserves intensive attention. This work proposed an automated machine learning (AutoML)-based indirect carbon emission analysis (ACIA) approach and predicted the specific indirect carbon emission from electrical consumption (SEe; kg CO2/m3) successfully in nine full-scale WWTPs (W1–W9) with different treatment configurations based on the historical operational data. The stacked ensemble models generated by the AutoML accurately predicted the SEe (mean absolute error = 0.02232–0.02352, R2 = 0.65107–0.67509). Then, the variable importance and Shapley additive explanations (SHAP) summary plots qualitatively revealed that the influent volume and the types of secondary and tertiary treatment processes were the most important variables associated with SEe prediction. The interpretation results of partial dependence and individual conditional expectation further verified quantitative relationships between input variables and SEe. Also, low energy efficiency with high indirect carbon emission of WWTPs was distinguished. Compared with traditional carbon emission analysis and prediction methods, the ACIA method could accurately evaluate and predict SEe of WWTPs with different treatment scales and processes with easily available variables and reveal qualitative and quantitative relationships inside datasets simultaneously, which is a powerful tool to benefit the "carbon neutrality" of WWTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曲奇完成签到,获得积分10
2秒前
皮皮发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
静寂焉完成签到,获得积分10
4秒前
顾矜应助dungaway采纳,获得10
5秒前
做好胶水发布了新的文献求助10
5秒前
Lucas应助ikun采纳,获得10
6秒前
8秒前
9秒前
9秒前
烟花应助哈哈哈哈采纳,获得10
9秒前
李奚发布了新的文献求助10
10秒前
CodeCraft应助去月球数星星采纳,获得10
10秒前
心灵美的傲松完成签到,获得积分10
11秒前
zyy应助smh采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
lovekobe完成签到,获得积分20
13秒前
shhoing应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
14秒前
希望天下0贩的0应助hua采纳,获得20
14秒前
nPgA2o应助科研通管家采纳,获得10
14秒前
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
nPgA2o应助科研通管家采纳,获得10
14秒前
cathyfly1006发布了新的文献求助10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
shhoing应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542539
求助须知:如何正确求助?哪些是违规求助? 4628834
关于积分的说明 14609866
捐赠科研通 4569918
什么是DOI,文献DOI怎么找? 2505492
邀请新用户注册赠送积分活动 1482882
关于科研通互助平台的介绍 1454215