Segmentation ability map: Interpret deep features for medical image segmentation

人工智能 分割 计算机视觉 图像分割 尺度空间分割 计算机科学 模式识别(心理学) 基于分割的对象分类 图像(数学) 深度学习
作者
Sheng He,Yanfang Feng,P. Ellen Grant,Yangming Ou
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:84: 102726-102726 被引量:2
标识
DOI:10.1016/j.media.2022.102726
摘要

Deep convolutional neural networks (CNNs) have been widely used for medical image segmentation. In most studies, only the output layer is exploited to compute the final segmentation results and the hidden representations of the deep learned features have not been well understood. In this paper, we propose a prototype segmentation (ProtoSeg) method to compute a binary segmentation map based on deep features. We measure the segmentation abilities of the features by computing the Dice between the feature segmentation map and ground-truth, named as the segmentation ability score (SA score for short). The corresponding SA score can quantify the segmentation abilities of deep features in different layers and units to understand the deep neural networks for segmentation. In addition, our method can provide a mean SA score which can give a performance estimation of the output on the test images without ground-truth. Finally, we use the proposed ProtoSeg method to compute the segmentation map directly on input images to further understand the segmentation ability of each input image. Results are presented on segmenting tumors in brain MRI, lesions in skin images, COVID-related abnormality in CT images, prostate segmentation in abdominal MRI, and pancreatic mass segmentation in CT images. Our method can provide new insights for interpreting and explainable AI systems for medical image segmentation. Our code is available on: https://github.com/shengfly/ProtoSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
东皇太憨完成签到,获得积分10
1秒前
大陆完成签到,获得积分10
1秒前
5秒前
lizhaonian完成签到,获得积分10
5秒前
ysssbq完成签到,获得积分10
6秒前
JJ完成签到,获得积分10
6秒前
6秒前
辞清完成签到 ,获得积分10
9秒前
JJ发布了新的文献求助10
9秒前
张亚慧完成签到 ,获得积分10
12秒前
单薄的南蕾完成签到 ,获得积分10
12秒前
Damon完成签到,获得积分10
13秒前
qwe1108完成签到 ,获得积分10
15秒前
知性的雅彤完成签到,获得积分10
18秒前
山丘完成签到,获得积分10
18秒前
生椰拿铁不加生椰完成签到 ,获得积分10
19秒前
香蕉觅云应助鲤鱼小鸽子采纳,获得10
19秒前
六六完成签到 ,获得积分10
20秒前
25秒前
文艺的金针菇完成签到,获得积分10
27秒前
选课完成签到,获得积分10
28秒前
28秒前
37秒前
思源应助科研通管家采纳,获得10
37秒前
英俊的铭应助科研通管家采纳,获得10
37秒前
酷波er应助科研通管家采纳,获得10
37秒前
38秒前
慕青应助科研通管家采纳,获得10
38秒前
科目三应助科研通管家采纳,获得10
38秒前
Ava应助科研通管家采纳,获得30
38秒前
38秒前
帮主哥哥应助科研通管家采纳,获得20
38秒前
CodeCraft应助科研通管家采纳,获得10
38秒前
nozero应助科研通管家采纳,获得50
38秒前
cdercder应助科研通管家采纳,获得10
38秒前
hjyylab应助科研通管家采纳,获得10
38秒前
38秒前
39秒前
从容的从凝完成签到,获得积分10
40秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825090
求助须知:如何正确求助?哪些是违规求助? 3367398
关于积分的说明 10445528
捐赠科研通 3086781
什么是DOI,文献DOI怎么找? 1698286
邀请新用户注册赠送积分活动 816682
科研通“疑难数据库(出版商)”最低求助积分说明 769911