High-resolution 3D printing of angle-ply annulus fibrosus scaffolds for intervertebral disc regeneration

脚手架 椎间盘 生物医学工程 材料科学 再生(生物学) 聚己内酯 组织工程 生物相容性 3d打印 解剖 复合材料 医学 细胞生物学 生物 冶金 聚合物
作者
Zhao Liu,Huan Wang,Zhangqin Yuan,Qiang Wei,Fengxuan Han,Song Chen,Hao Xu,Jiaying Li,Jiayuan Wang,Zexi Li,Qixin Chen,J.Y.H. Fuh,Lin Ding,Hui Wang,Bin Li
出处
期刊:Biofabrication [IOP Publishing]
卷期号:15 (1): 015015-015015 被引量:16
标识
DOI:10.1088/1758-5090/aca71f
摘要

Abstract Intervertebral disc (IVD) degeneration is one of the leading causes of disability, and current therapies are mainly unsatisfactory. The key pathological feature during IVD degeneration is the dysfunction of annulus fibrosus (AF). Although tissue-engineered AF has shown great promise for IVD regeneration, the design and fabrication of biomimetic AF scaffold remains a challenge due to the complexity of its structure. Nowadays, 3D printing technology has drawn great attention due to its customizable processes and ability to produce complex tissue architecture. However, few existing 3D printing methods can accurately replicate the fine angle-ply architecture of native AF, which is one of the most critical steps for IVD regeneration, due to the limited printing resolution. In this study, we aimed to fabricate high-resolution polycaprolactone (PCL) scaffolds using a newly developed electrohydrodynamic 3D printing technique. The structural advantages of such scaffolds were verified by finite element analysis (FEA). The PCL scaffolds were further assembled into AF construct to replicate the angle-ply architecture of AF. The optimal assembling method was confirmed by FEA and mechanical tests. The in vitro experiments showed that the 3D printed AF scaffolds presented favorable biocompatibility and supported the adhesion and growth of AF cells. The in vivo performance of tissue-engineered IVDs (TE-IVDs), which consisted of 3D printed AF scaffold and GelMA hydrogel that simulated nucleus pulposus (NP), were evaluated using a rat total disc replacement model. We found that the implantation of TE-IVDs helped maintain the disc height, reduced the loss of NP water content, and partially restored the biomechanical function of IVD. In addition, the TE-IVDs achieved well integration with adjacent tissues and promoted new tissue formation. In summary, being able to accurately simulate the structural characteristics of native AF, the 3D printed angle-ply AF scaffolds hold potential for future applications in IVD regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我不会乱起名字的完成签到,获得积分10
4秒前
4秒前
小也发布了新的文献求助10
7秒前
爆米花应助Enri采纳,获得10
7秒前
10秒前
777完成签到,获得积分20
12秒前
VDC应助123采纳,获得50
13秒前
14秒前
汉堡包应助小也采纳,获得10
14秒前
777发布了新的文献求助10
15秒前
HH完成签到,获得积分10
17秒前
可靠的亦竹完成签到 ,获得积分10
17秒前
20秒前
21秒前
111完成签到,获得积分10
23秒前
24秒前
小也完成签到 ,获得积分10
25秒前
Aaa_12012完成签到,获得积分10
26秒前
littlestar发布了新的文献求助10
27秒前
ding7862完成签到,获得积分10
30秒前
32秒前
littlestar完成签到,获得积分20
33秒前
贺小刚发布了新的文献求助10
34秒前
叶轻寒完成签到 ,获得积分10
36秒前
arcstar发布了新的文献求助10
37秒前
里里要努力完成签到,获得积分10
40秒前
尘南浔完成签到 ,获得积分10
40秒前
明理的以亦应助Linda采纳,获得10
41秒前
洁净百川完成签到 ,获得积分10
43秒前
45秒前
46秒前
笨笨芯应助1111采纳,获得10
46秒前
47秒前
49秒前
49秒前
Albert完成签到,获得积分10
49秒前
认真果汁发布了新的文献求助10
50秒前
imp发布了新的文献求助10
51秒前
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783167
求助须知:如何正确求助?哪些是违规求助? 3328504
关于积分的说明 10236746
捐赠科研通 3043596
什么是DOI,文献DOI怎么找? 1670607
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119