From a 3D hollow hexahedron to 2D hierarchical nanosheets: controllable synthesis of biochemistry-enabled Na7V3(P2O7)4/C composites for high-potential and long-life sodium ion batteries

纳米片 材料科学 纳米技术 插层(化学) 电极 比表面积 化学 催化作用 生物化学 物理化学 无机化学
作者
Linlin Ke,Tiantian Yu,Bo Lin,Baodong Liu,Sen Zhang,Chao Deng
出处
期刊:Nanoscale [Royal Society of Chemistry]
卷期号:8 (45): 19120-19128 被引量:23
标识
DOI:10.1039/c6nr07012d
摘要

Tailoring materials into different structures offers unprecedented opportunities in the realization of their functional properties. Particularly, controllable design of diverse structured electrode materials is regarded as a crucial step towards fabricating high-performance batteries. Herein, a general biochemistry-directed strategy has been developed to fabricate functional materials with controllable architectures and superior performance. The natural structure of fern (i.e. Cibotium) spores realizes the formation of a three-dimensional hexahedral bio-precursor. Either its core or shell is targeted to be destroyed, resulting in different architectures, from a 3D hollow hexahedron to a 2D hierarchical nanosheet, of the final product. As a case study, sodium vanadium pyrophosphate (i.e. Na7V3(P2O7)4) is employed as the electrochemically active material in this study. The crucial role of controllable damage in the construction of diverse architectures is discussed. Moreover, the relationship between different outside architectures, internal microstructures and the sodium intercalation capabilities of the bio-composites is clarified. Among all the samples, the 2D nanosheet with hierarchical structures has the smallest particle size and the highest surface area, which are favourable for its fast sodium intercalation. As a result, it is capable of high-rate long-term cycling, which achieves a high cycling efficiency of 93% after 500 cycles at 20C. However, a 3D hollow hexahedron has a thick shell and inferior surface characteristics, which greatly limits its sodium transport kinetics and leads to inferior performance. Therefore, the present work not only highlights a general, green and energy-efficient biochemistry-enabled strategy to prepare high-performance electrode materials, but also provides clues to controllably design diverse architectures for functional materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
棉花不是花完成签到,获得积分10
9秒前
小猪佩奇完成签到,获得积分10
10秒前
pluto应助乐观小之采纳,获得10
18秒前
orixero应助闪闪雅阳采纳,获得10
18秒前
NexusExplorer应助nian采纳,获得10
20秒前
爆米花完成签到,获得积分10
20秒前
Owen应助海绵宝宝采纳,获得10
24秒前
cwq完成签到 ,获得积分10
26秒前
蔡从安驳回了iNk应助
26秒前
29秒前
奋斗雅香完成签到 ,获得积分10
31秒前
Suttier完成签到 ,获得积分10
32秒前
闪闪雅阳发布了新的文献求助10
32秒前
杪春完成签到 ,获得积分10
33秒前
闪闪雅阳完成签到,获得积分10
40秒前
蔡从安驳回了iNk应助
45秒前
港港完成签到 ,获得积分10
49秒前
49秒前
芙瑞完成签到 ,获得积分10
53秒前
海绵宝宝发布了新的文献求助10
56秒前
FashionBoy应助科研通管家采纳,获得10
59秒前
victory_liu完成签到,获得积分10
1分钟前
奥利奥利奥完成签到 ,获得积分10
1分钟前
酷波er应助yun尘世采纳,获得10
1分钟前
旷野发布了新的文献求助10
1分钟前
哈哈学习学习噢完成签到,获得积分10
1分钟前
HoHo完成签到 ,获得积分10
1分钟前
1分钟前
nian发布了新的文献求助10
1分钟前
柳行天完成签到 ,获得积分10
1分钟前
李娇完成签到 ,获得积分10
1分钟前
奥丁蒂法完成签到,获得积分10
1分钟前
Oracle应助旷野采纳,获得10
1分钟前
子虚一尘完成签到,获得积分10
1分钟前
占那个完成签到 ,获得积分10
1分钟前
1分钟前
海绵宝宝完成签到,获得积分10
1分钟前
zoey完成签到,获得积分10
1分钟前
顾矜应助zdl采纳,获得10
1分钟前
紫金之恋完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779247
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220097
捐赠科研通 3039971
什么是DOI,文献DOI怎么找? 1668528
邀请新用户注册赠送积分活动 798717
科研通“疑难数据库(出版商)”最低求助积分说明 758503