Bayesian Networks Improve Causal Environmental Assessments for Evidence-Based Policy

贝叶斯网络 概率逻辑 计算机科学 因果结构 因果推理 贝叶斯概率 机器学习 贝叶斯推理 推论 因果模型 人工智能 风险分析(工程) 计量经济学 数学 统计 物理 医学 量子力学
作者
John F. Carriger,Mace G. Barron,Michael C. Newman
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:50 (24): 13195-13205 被引量:60
标识
DOI:10.1021/acs.est.6b03220
摘要

Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on valued ecological resources. These aspects are demonstrated through hypothetical problem scenarios that explore some major benefits of using Bayesian networks for reasoning and making inferences in evidence-based policy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沙雕荷包蛋完成签到,获得积分10
1秒前
2秒前
illuminate完成签到 ,获得积分10
3秒前
mzh发布了新的文献求助200
4秒前
6秒前
懵懂的凝丹完成签到 ,获得积分10
6秒前
剑指东方是为谁应助Andy采纳,获得10
12秒前
13秒前
dddd完成签到 ,获得积分10
15秒前
17秒前
香蕉觅云应助kkkking采纳,获得10
18秒前
18秒前
赘婿应助tianxiong采纳,获得10
18秒前
huichuanyin完成签到 ,获得积分10
19秒前
qiulong发布了新的文献求助10
20秒前
hhhh发布了新的文献求助30
20秒前
小宝妈完成签到,获得积分10
20秒前
20秒前
23秒前
人各有痣完成签到,获得积分10
23秒前
25秒前
想发sci发布了新的文献求助10
25秒前
高震博完成签到 ,获得积分10
26秒前
wshwx发布了新的文献求助10
26秒前
天才莫拉尔完成签到,获得积分10
27秒前
追梦完成签到 ,获得积分10
28秒前
logan完成签到,获得积分10
29秒前
科研通AI5应助qiulong采纳,获得10
29秒前
科研通AI5应助小鬼頭采纳,获得10
30秒前
111111完成签到 ,获得积分10
30秒前
司空剑封完成签到,获得积分10
30秒前
yinger1984完成签到,获得积分10
31秒前
四憙完成签到 ,获得积分10
32秒前
糊涂生活糊涂过完成签到 ,获得积分10
34秒前
35秒前
小叮当完成签到,获得积分10
39秒前
39秒前
39秒前
kkkking发布了新的文献求助10
40秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776393
求助须知:如何正确求助?哪些是违规求助? 3321780
关于积分的说明 10207872
捐赠科研通 3037141
什么是DOI,文献DOI怎么找? 1666541
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872