Measuring Emotion: Self-Reports vs. Physiological Indicators

心理学 认知心理学
作者
David Ciuk,Allison S. Troy,Markera C. Jones
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:39
标识
DOI:10.2139/ssrn.2595359
摘要

While emotion has gained popularity in political science research, its measurement is still an open question. To date, most work on emotion and behavior relies on survey respondents to accurately and honestly report their emotional responses to relevant stimuli. While this strategy is relatively inexpensive and efficient, its accuracy has been called into question. More specifically, it has been suggested that people (1) have a difficult time pinpointing specific reasons for their attitudes, (2) hesitate to give honest answers when such answers are socially undesirable, and (3) rationalize their answers to such questions for various reasons. An alternative measurement strategy involves recording respondents' physiological responses to stimuli, which indicate activation of the autonomic nervous system. Unlike self-reports, physiological measures are not subject to social desirability bias, and they can capture aspects of emotional response that are beyond respondents' conscious control. Despite a wealth of research from both political science and psychology on the measurement characteristics of emotion self-reports and a large body of psychological research on physiological measures, there is a lack of understanding on the degree to which the two types of measures "converge." Our purpose here is two-fold. First, we examine the extent to which physiological reactions to stimuli influence self-reports. Second, we look for conditions under which one measure outperforms the other in terms of explanation/prediction. In short, we find that self reports are better predictors of political attitudes, but also, self-reports may provide biased estimates of emotions' effects on attitudes in respondents that score high on emotion regulation scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小民完成签到 ,获得积分10
3秒前
3秒前
wh完成签到 ,获得积分10
4秒前
易烊千玺发布了新的文献求助10
4秒前
gaberella发布了新的文献求助10
5秒前
如你所liao发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
快乐的忆山完成签到,获得积分10
8秒前
Jxppp完成签到,获得积分10
9秒前
10秒前
香蕉觅云应助hzlong采纳,获得10
11秒前
11秒前
12秒前
13秒前
疏水无纺布完成签到,获得积分10
14秒前
15秒前
16秒前
科研小白发布了新的文献求助10
17秒前
Jxppp发布了新的文献求助10
17秒前
小马甲应助Ferry采纳,获得10
18秒前
18秒前
xx发布了新的文献求助10
19秒前
19秒前
22秒前
科研通AI5应助soilbeginner采纳,获得30
23秒前
gaberella完成签到,获得积分10
23秒前
24秒前
25秒前
25秒前
hzlong完成签到,获得积分20
26秒前
青城发布了新的文献求助10
27秒前
27秒前
Wellbeing发布了新的文献求助10
28秒前
28秒前
艳子发布了新的文献求助10
29秒前
FCL发布了新的文献求助10
29秒前
hzlong发布了新的文献求助10
30秒前
Ava应助樱坠梨殆采纳,获得10
31秒前
乐乐应助科研小菜鸟采纳,获得10
32秒前
量子星尘发布了新的文献求助10
33秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864818
求助须知:如何正确求助?哪些是违规求助? 3407281
关于积分的说明 10653531
捐赠科研通 3131330
什么是DOI,文献DOI怎么找? 1726953
邀请新用户注册赠送积分活动 832100
科研通“疑难数据库(出版商)”最低求助积分说明 780146