李雅普诺夫指数
吸引子
分歧(语言学)
相空间
李雅普诺夫函数
统计物理学
系列(地层学)
趋同(经济学)
数学
动力系统理论
应用数学
数学分析
控制理论(社会学)
混乱的
计算机科学
非线性系统
物理
人工智能
生物
古生物学
经济
经济增长
语言学
量子力学
控制(管理)
哲学
热力学
作者
Alan Wolf,J. B. Swift,Harry L. Swinney,John A. Vastano
标识
DOI:10.1016/0167-2789(85)90011-9
摘要
We present the first algorithms that allow the estimation of non-negative Lyapunov exponents from an experimental time series.Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior.are related to the exponentially fast divergence or convergence of nearby orbits in phase space.A system with one or more positive Lyapunov exponents is defined to be chaotic.•Our method is rooted conceptually in a previously developed technique that could only be applied to analytically defined model systems: we monitor the long-term growth rate of small volume elements in an attractor.The method is tested on model systems with known Lyapunov spectra, and applied to data for the Belousov-Zhabotinskii reaction and Couette-Taylor ftow.Contents 1. Introduction 2. The Lyapunov spectrum defined 3. Calculation of Lyapunov spectra from differential equations 4.An approach to spectral estimation for experimental data 5. Spectral algorithm implementation* 6. Implementation details* 7.
科研通智能强力驱动
Strongly Powered by AbleSci AI